PediaFlow™ Maglev Ventricular Assist Device: A Prescriptive Design Approach
Tóm tắt
This report describes a multi-disciplinary program to develop a pediatric blood pump, motivated by the critical need to treat infants and young children with congenital and acquired heart diseases. The unique challenges of this patient population require a device with exceptional biocompatibility, miniaturized for implantation up to 6 months. This program implemented a collaborative, prescriptive design process, whereby mathematical models of the governing physics were coupled with numerical optimization to achieve a favorable compromise among several competing design objectives. Computational simulations of fluid dynamics, electromagnetics, and rotordynamics were performed in two stages: first using reduced-order formulations to permit rapid optimization of the key design parameters; followed by rigorous CFD and FEA simulations for calibration, validation, and detailed optimization. Over 20 design configurations were initially considered, leading to three pump topologies, judged on the basis of a multi-component analysis including criteria for anatomic fit, performance, biocompatibility, reliability, and manufacturability. This led to fabrication of a mixed-flow magnetically levitated pump, the PF3, having a displaced volume of 16.6 cc, approximating the size of a AA battery and producing a flow capacity of 0.3–1.5 L/min. Initial in vivo evaluation demonstrated excellent hemocompatibility after 72 days of implantation in an ovine. In summary, combination of prescriptive and heuristic design principles have proven effective in developing a miniature magnetically levitated blood pump with excellent performance and biocompatibility, suitable for integration into chronic circulatory support system for infants and young children; aiming for a clinical trial within 3 years.
Tài liệu tham khảo
Aladahalli, C., J. Cagan, and K. Shimada. Objective function effect based pattern search—theoretical framework inspired by 3D component layout. ASME J. Mech. Des. 129(3):243–254, 2007.
Antaki, J., S. Banda, B. Paden, and M. Piovoso. Award winning control applications. IEEE Control Syst. Mag. 22:8–20, 2002.
Antaki, J. F., K. C. Butler, R. L. Kormos, A. Kawai, H. Konishi, J. P. Kerrigan, H. S. Borovetz, T. R. Maher, M. V. Kameneva, and B. P. Griffith. In vivo evaluation of the Nimbus axial flow ventricular assist system. Criteria and methods. ASAIO J. 39(3):M231–M236, 1993.
Antaki, J. F., C. G. Diao, F. J. Shu, J. C. Wu, R. Zhao, and M. V. Kameneva. Microhaemodynamics within the blade tip clearance of a centrifugal turbodynamic blood pump. Proc. Inst. Mech. Eng. H 222(4):573–581, 2008.
Antaki, J. F., O. Ghattas, G. W. Burgreen, and B. He. Computational flow optimization of rotary blood pump components. Artif. Organs 19(7):608–615, 1995.
Apel, J., R. Paul, S. Klaus, T. Siess, and H. Reul. Assessment of hemolysisrelated quantities in a microaxial blood pump by computational fluid dynamics. Artif. Organs 25:341–347, 2001.
Arora, D., M. Behr, and M. Pasquali. A tensor-based measure for estimating blood damage. Artif. Organs 28(11):1002–1015, 2004.
Ataullakhanov, F. I., and M. A. Panteleev. Mathematical modeling and computer simulation in blood coagulation. Pathophysiol. Haemost. Thromb. 34(2–3):60–70, 2005.
Badner, N. H., and J. A. Doyle. Comparison of pulsatile versus nonpulsatile perfusion on the postcardiopulmonary bypass aortic-radial artery pressure gradient. J. Cardiothorac. Vasc. Anesth. 11(4):428–431, 1997.
Baldwin, J. T., H. S. Borovetz, B. W. Duncan, M. J. Gartner, R. K. Jarvik, W. J. Weiss, and T. R. Hoke. The National heart, lung, and blood institute pediatric circulatory support program. Circulation 113(1):147–155, 2006.
Bearnson, G. B., G. B. Jacobs, J. Kirk, P. S. Khanwilkar, K. E. Nelson, and J. W. Long. HeartQuest ventricular assist device magnetically levitated centrifugal blood pump. Artif. Organs 30(5):339–346, 2006.
Bearnson, G. B., D. B. Olsen, P. S. Khanwilkar, J. W. Long, M. Sinnott, A. Kumar, P. E. Allaire, M. Baloh, and J. Decker. Implantable centrifugal pump with hybrid magnetic bearings. ASAIO J. 44(5):M733–M736, 1998.
Blackshear, P., and G. Blackshear. Mechanical hemolysis. In: Handbook of Bioengineering, edited by S. Chien, and R. Skalak. New York: McGraw Hill, 1987, pp. 15.1–15.9.
Blackshear, Jr., P. L., F. D. Dorman, J. H. Steinbach, E. J. Maybach, A. Singh, and R. E. Collingham. Shear, wall interaction and hemolysis. Trans. Am. Soc. Artif. Intern. Organs 12:113–120, 1966.
Bludszuweit, C. Three dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif. Organs 19:590–596, 1995.
Boyle, A. J., S. D. Russell, J. J. Teuteberg, M. S. Slaughter, N. Moazami, F. D. Pagani, O. H. Frazier, G. Heatley, D. J. Farrar, and R. John. Low thromboembolism and pump thrombosis with the HeartMate II left ventricular assist device: analysis of outpatient anti-coagulation. J. Heart Lung Transplant. 28(9):881–887, 2009.
Burgreen, G., and J. F. Antaki. CFD-based design optimization of a three-dimensional rotary blood pumps. In: Proceedings of the 6th Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA.
Burgreen, G. W., J. F. Antaki, Z. J. Wu, and A. J. Holmes. Computational fluid dynamics as a development tool for rotary blood pumps. Artif. Organs 25(5):336–340, 2001.
Burgreen, G. W., J. F. Antaki, J. Wu, P. le Blanc, and K. C. Butler. A computational, experimental comparison of two outlet stators for the Nimbus LVAD. Left ventricular assist device. ASAIO J. 45(4):328–333, 1999.
Butler, K., R. Wampler, B. Griffith, J. Antaki, R. Kormos, and H. Borovetz. Development of an implantable axial flow LVAS. In: International Symposium on Rotary Blood Pumps. Vienna, pp. 148–153, 1991.
Chen, C., B. Paden, J. Antaki, J. Ludlow, D. Paden, R. Crowson, and G. Bearnson. A magnetic suspension theory and its application to the HeartQuest ventricular assist device. Artif. Organs 26(11):947–951, 2002.
Clegg, A. J., D. A. Scott, E. Loveman, J. Colquitt, P. Royle, and J. Bryant. Clinical and cost-effectiveness of left ventricular assist devices as destination therapy for people with end-stage heart failure: a systematic review and economic evaluation. Int. J. Technol. Assess. Health Care 23(2):261–268, 2007.
Cross, N. Engineering Design Methods: Strategies for Product Design (3rd ed.). Chichester: Wiley, p. 212, 2000.
Dalton, Jr., M. L., R. T. McCarty, K. E. Woodward, and T. G. Barila. The army artificial heart pump. II. Comparison of pulsatile and nonpulsatile flow. Surgery 58(5):840–845, 1965.
Earnshaw, S. On the nature of the molecular forces which regulate the constitution of the luminiferous ether. Trans. Camb. Philos. Soc. 7:97–112, 1842.
Eden, P. Civil Aircraft Today: The World’s Most Successful Commercial Aircraft. London: Amber Books Ltd., 2008.
FDA. Design Control Guidance for Medical Device Manufacturers. Vol. FDA 21 CFR 820.30 and Sub-clause 4.4 of ISO 9001, 1997.
FDA/NHLBI/NSF. Workshop on Computer Methods for Cardiovascular Devices, June 1–2, 2009.
Frazier, O. H., and J. K. Kirklin. Mechanical Circulatory Support, Vol. VI. Philadelphia: Elsevier, p. 225, 2006.
Garon, A., and M. I. Farinas. Fast three-dimensional numerical hemolysis approximation. Artif. Organs 28(5):1016–1025, 2004.
Giersiepen, M., L. J. Wurzinger, R. Opitz, and H. Reul. Estimation of shear stress-related blood damage in heart valve prostheses—in vitro comparison of 25 aortic valves. Int. J. Artif. Organs 13(5):300–306, 1990.
Griffith, B., and W. H. Burns. Mixed flow electrohydraulic VAD. In: Artificial Heart Program Conference, June 9–13, Washington, DC: US Department of Health, Education, and Welfare, 1969.
He, B., O. Ghattas, and J. Antaki. Continuous shape sensitivity of incompressible Navier–Stokes flows. In: Proceedings of the 7th Multidisciplinary Analysis and Optimization. AIAA, pp. 430–440, 1998.
Hentschel, B., I. Tedjo, M. Probst, M. Wolter, M. Behr, C. Bischof, and T. Kuhlen. Interactive blood damage analysis for ventricular assist devices. IEEE Trans. Vis. Comput. Graph. 14(6):1515–1522, 2008.
Heuser, G., and R. Opitz. A Couette viscometer for short time shearing in blood. Biorheology 17:17–27, 1980.
Hiestand, B. C. Circulatory assist devices in heart failure patients. Heart Fail. Clin. 5(1):55–62, 2009; (vi).
Hund, S. J., and J. F. Antaki. An extended convection diffusion model for red blood cell-enhanced transport of thrombocytes and leukocytes. Phys. Med. Biol. 54(20):6415–6435, 2009.
Johnson, C., S. Vandenberghe, A. Daly, J. Woolley, S. Snyder, J. Verkaik, S.-H. Ye, H. Borovetz, J. Antaki, P. Wearden, M. Kameneva, and W. Wagner. Biocompatibility assessment of the first generation PediaFlow(tm) pediatric ventricular assist device. Artif. Organs 2010. (to appear).
Jordan, A., T. David, S. Homer-Vanniasinkam, A. Graham, and P. Walker. The effects of margination and red cell augmented platelet diffusivity on platelet adhesion in complex flow. Biorheology 41(5):641–653, 2004.
Khanwilkar, P., D. Olsen, G. Bearnson, P. Allaire, E. Maslen, R. Flack, and J. Long. Using hybrid magnetic bearings to completely suspend the impeller of a ventricular assist device. Artif. Organs 20(6):597–604, 1996.
Kim, N. J., C. Diao, K. H. Ahn, S. J. Lee, M. V. Kameneva, and J. F. Antaki. Parametric study of blade tip clearance, flow rate, and impeller speed on blood damage in rotary blood pump. Artif. Organs 33(6):468–474, 2009.
Konishi, H., M. J. Yland, M. Brown, K. Yamazaki, M. Macha, R. Konishi, J. P. Kerrigan, S. Zhang, P. S. Randhawa, J. F. Antaki, K. Fuse, and R. L. Kormos. Effect of pulsatility and hemodynamic power on recovery of renal function. ASAIO J. 42(5):M720–M723, 1996.
Leverett, L., J. Hellums, C. Alfrey, and E. Lynch. Red blood cell damage by shear stress. Biophys. J. 12(3):257–273, 1972.
Lewis, J., and B. Weibusch. MagLev pumps sustain the wounded heart. Design News, 98–103, 2000.
Lubeck, D. P., and J. P. Bunker. The artificial heart: costs, risks, and benefits. In: NTIS #PB82-239971. Office of Technology Assessment, 1982.
Morales, D. L., W. J. Dreyer, S. W. Denfield, J. S. Heinle, E. D. McKenzie, D. E. Graves, J. F. Price, J. A. Towbin, O. H. Frazier, D. A. Cooley, and C. D. Fraser, Jr. Over two decades of pediatric heart transplantation: how has survival changed? J. Thorac. Cardiovasc. Surg. 133(3):632–639, 2007.
Moss, A. J. Blood pressure in infants children and adolescents. West. J. Med. 134(4):296–314, 1981.
Naito, K., K. Mizuguchi, and Y. Nosé. The need for standardizing the index of hemolysis. Artif. Organs 18:7–10, 1994.
Nishinaka, T., E. Tatsumi, Y. Taenaka, H. Takano, and H. Koyanagi. Influence of pulsatile and nonpulsatile left heart bypass on the hormonal circadian rhythm. ASAIO J. 46(5):582–586, 2000.
Nose, Y., K. Kawahito, and T. Nakazawa. Can we develop a nonpulsatile permanent rotary blood pump? Yes, we can. Artif. Organs 20(6):467–474, 1996.
Olsen, D. B. The history of continuous-flow blood pumps. Artif. Organs 24(6):401–404, 2000.
Olson, J. T., and J. Cagan. Inter-agent ties in computational configuration design. Artif. Intell. Eng. Des. Anal. Manuf. 18(2):135–152, 2004.
Orsborn, S., and J. Cagan. Multiagent shape grammar implementation: automatically generating form concepts according to a preference function. J. Mech. Des. 131(12):10, 2009.
Paden, B., N. Groom, and J. Antaki. Design formulae for permanent magnet bearings. ASME J. Mech. Des. 125:734–738, 2003.
Pagani, F. D., L. W. Miller, S. D. Russell, K. D. Aaronson, R. John, A. J. Boyle, J. V. Conte, R. C. Bogaev, T. E. MacGillivray, Y. Naka, D. Mancini, H. T. Massey, L. Chen, C. T. Klodell, J. M. Aranda, N. Moazami, G. A. Ewald, D. J. Farrar, and O. H. Frazier. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J. Am. Coll. Cardiol. 54(4):312–321, 2009.
Panteleev, M. A., N. M. Ananyeva, F. I. Ataullakhanov, and E. L. Saenko. Mathematical models of blood coagulation and platelet adhesion: clinical applications. Curr. Pharm. Des. 13(14):1457–1467, 2007.
Paul, R., J. Apel, S. Klaus, F. Schugner, P. Schwindke, and H. Reul. Shear stress related blood damage in laminar couette flow. Artif. Organs 27(6):517–529, 2003.
Petroski, H. To Engineer is Human: The role of Failure in Successful Design. New York: Vintage Books, 1992.
Richardson, E. Applications of a theoretical model for haemolysis in shear flow. Biorheology 12(1):27–37, 1975.
Sakuma, I., S. Takatani, and Y. Nose. Development of a motor driven sealless centrifugal blood pump. In: International Workshop on Rotary Blood Pumps, pp. 48–53, 1991.
Saxton, G., and C. Andrews. An ideal pump with hydrodynamic characteristics analogous to the mammalian heart. Trans. Am. Soc. Artif. Organs 6:288–289, 1960.
Shu, F., S. Vandenberghe, and J. F. Antaki. The importance of dQ/dt on the flow field in a turbodynamic pump with pulsatile flow. Artif. Organs 33(9):757–762, 2009.
Smith, W. A., P. Allaire, J. Antaki, K. C. Butler, W. Kerkhoffs, T. Kink, H. Loree, and H. Reul. Collected nondimensional performance of rotary dynamic blood pumps. ASAIO J. 50(1):25–32, 2004.
Sorensen, E. N., G. W. Burgreen, W. R. Wagner, and J. F. Antaki. Computational simulation of platelet deposition and activation: I. Model development and properties. Ann. Biomed. Eng. 27(4):436–448, 1999.
Sorensen, E. N., G. W. Burgreen, W. R. Wagner, and J. F. Antaki. Computational simulation of platelet deposition and activation: II. Results for Poiseuille flow over collagen. Ann. Biomed. Eng. 27(4):449–458, 1999.
Stepanoff, A. J. Centrifugal and axial flow pumps: theory, design, and application. Malabar, FL: Krieger Pub. Co., p. 462, 1993.
Taenaka, Y., E. Tatsumi, H. Nakamura, T. Nakatani, A. Yagura, H. Sekii, E. Sasaki, H. Akagi, M. Goto, and H. Takano. Physiologic reactions of awake animals to an immediate switch from a pulsatile to nonpulsatile systemic circulation. ASAIO Trans. 36(3):M541–M544, 1990.
Throckmorton, A. L., P. E. Allaire, H. P. Gutgesell, G. P. Matherne, D. B. Olsen, H. G. Wood, J. H. Allaire, and S. M. Patel. Pediatric circulatory support systems. ASAIO J. 48(3):216–221, 2002.
Uber, B. E., S. A. Webber, V. O. Morell, and J. F. Antaki. Hemodynamic guidelines for design and control of a turbodynamic pediatric ventricular assist device. ASAIO J. 52(4):471–478, 2006.
Undar, A., S. B. Johnson, and J. H. Calhoon. Comparison of pulsatile versus nonpulsatile perfusion on the postcardiopulmonary bypass aortic-radial artery pressure gradient. J. Cardiothorac. Vasc. Anesth. 12(3):376–377, 1998.
Undar, A., C. M. Zapanta, J. D. Reibson, M. Souba, B. Lukic, W. J. Weiss, A. J. Snyder, A. R. Kunselman, W. S. Pierce, G. Rosenberg, and J. L. Myers. Precise quantification of pressure flow waveforms of a pulsatile ventricular assist device. ASAIO J. 51(1):56–59, 2005.
Wampler, R., J. Moise, O. Frazier, and D. Olsen. In vivo evaluation of a peripheral vascular access axial flow blood pump. Trans. Am. Soc. Artif. Organs 34:450, 1988.
Wootton, D. M., C. P. Markou, S. R. Hanson, and D. N. Ku. A mechanistic model of acute platelet accumulation in thrombogenic stenoses. Ann. Biomed. Eng. 29(4):321–329, 2001.
Wu, Z. J., J. F. Antaki, G. W. Burgreen, K. C. Butler, D. C. Thomas, and B. P. Griffith. Fluid dynamic characterization of operating conditions for continuous flow blood pumps. ASAIO J. 45(5):442–449, 1999.
Wu, J., J. F. Antaki, T. A. Snyder, W. R. Wagner, H. S. Borovetz, and B. E. Paden. Design optimization of blood shearing instrument by computational fluid dynamics. Artif. Organs 29(6):482–489, 2005.
Wu, J., J. F. Antaki, W. R. Wagner, T. A. Snyder, B. E. Paden, and H. S. Borovetz. Elimination of adverse leakage flow in a miniature pediatric centrifugal blood pump by computational fluid dynamics-based design optimization. ASAIO J. 51(5):636–643, 2005.
Wu, J., B. E. Paden, H. S. Borovetz, and J. F. Antaki. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device. Artif. Organs 2009.
Yeleswarapu, K. K., J. F. Antaki, M. V. Kameneva, and K. R. Rajagopal. A mathematical model for shear-induced hemolysis. Artif. Organs 19(7):576–582, 1995.
Zhao, R., M. V. Kameneva, and J. F. Antaki. Investigation of platelet margination phenomena at elevated shear stress. Biorheology 44(3):161–177, 2007.
Zhao, R., J. N. Marhefka, F. Shu, S. J. Hund, M. V. Kameneva, and J. F. Antaki. Micro-flow visualization of red blood cell-enhanced platelet concentration at sudden expansion. Ann. Biomed. Eng. 36(7):1130–1141, 2008.