Peculiarities of structural transformations in zirconia nanocrystals
Tóm tắt
The transitions of metastable tetragonal phase as well as high-temperature tetragonal phase into the low-temperature monoclinic phase upon heating and cooling were thoroughly studied in zirconia nanoparticles. High-temperature X-ray diffraction, thermal analysis and Raman spectroscopy were used to provide the systematic approach to the investigation of zirconia nanoparticles thermal behavior. A phase transformation sequence in the ZrO2–H2O system was determined, and the mechanisms of tetragonal-to-monoclinic transition upon heating and cooling were suggested. Here, the phenomenon was found and described, which was determined as “self-powdering” of nanoparticles occurring during structural transition. This phenomenon was observed by in situ investigation of the evolution of crystalline nanoparticles from amorphous zirconium hydroxide during thermal treatment in air. The tetragonal-to-monoclinic phase transition, induced by cooling from the temperature of equilibrium of tetragonal zirconia (i.e., above 1170 °C), is accompanied by a significant crystallite size decrease (with corresponding 3–4 times decrease of crystallite volume). The experimental results facilitate applications of zirconia nanoparticles to obtain high-performance nanopowders for nanoceramics.
Tài liệu tham khảo
Almjasheva OV (2015) Heat-stimulated transformation of zirconium dioxide nanocrystals produced under hydrothermal conditions. Nanosyst Phys Chem Math 6:697–703. doi:10.17586/2220-8054-2015-6-5-697-703
Belov G, Iorish V, Yungman V (1999) IVTANTHERMO for Windows—database on thermodynamic properties and related software. Calphad 23:173–180
Chevalier J, Gremillard L (2009) Ceramics for medical applications: A picture for the next 20 years. J Eur Ceram Soc 29:1245–1255. doi:10.1016/j.jeurceramsoc.2008.08.025
Chevalier J, Gremillard L, Virkar AV, Clarke DR (2009) The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc 92:1901–1920. doi:10.1111/j.1551-2916.2009.03278.x
Davis H (1984) Effect of pH on crystal phase of ZrO2 precipitated from solution and calcined at 600 °C. Commun Am Ceram Soc 67:168. doi:10.1111/j.1151-2916.1984.tb19185.x
Demkov AA, Navrotsky A (eds) (2005) Materials fundamentals of gate dielectrics. Springer, Dordrecht
Djurado E, Bouvier P, Lucazeau G (2000) Crystallite size effect on the tetragonal-monoclinic transition of undoped nanocrystalline zirconia studied by XRD and Raman spectrometry. Solid State Chem 149:399–407. doi:10.1006/jssc.1999.8565
Domnina MI, Filatov SK (1983) High-temperature diffractometry of metastable zirconium dioxide. Izv Akad Nauk SSSR Neorg Mater 19:920–924
Gribb A, Banfield J (1997) Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am Mineral 82:717–728
Guo X, Schober T (2004) Water incorporation in tetragonal zirconia. J Am Ceram Soc 87:746–748. doi:10.1111/j.1551-2916.2004.00746.x
Hirata T, Asari E, Kitajima M (1994) Infrared and Raman spectroscopic studies of ZrO2 polymorphs doped with Y2O3 or CeO2. Solid State Chem 110:201–207
Jiménez S, Carmona S, Castaño VM (2009) Zirconia nanoparticles: a martensitic phase transition at low temperature. J Exp Nanosci 4:95–103. doi:10.1080/17458080802570633
Kelly JR, Denry I (2008) Stabilized zirconia as a structural ceramic: an overview. Dent Mater 24:289–298. doi:10.1016/j.dental.2007.05.005
Keramidas VG, White WB (1973) Raman scattering study of the crystallization and phase transformations of ZrO2. Am CeramSoc 57:22–24
Kharlanov AN, Tarakulova AO, Lunina EV, Lunin VV (1997) Thermal transformations in zirconium dioxide doped by yttrium, lanthanum, and scandium oxides. Russ J Phys Chem A 71:985–990
Kumar S, Bhunia S, Ojha AK (2015) Effect of calcination temperature on phase transformation, structural and optical properties of sol–gel derived ZrO2 nanostructures. Phys E Low-dimens Syst Nanostruct 66:74–80. doi:10.1016/j.physe.2014.09.007
Li F, Li Y, Song Z et al (2015) Evolution of the crystalline structure of zirconia nanoparticles during their hydrothermal synthesis and calcination: insights into the incorporations of hydroxyls into the lattice. J Eur Ceram Soc 35:2361–2367. doi:10.1016/j.jeurceramsoc.2015.02.017
Lin FQ, Dong WS, Liu CL et al (2008) In situ source-template-interface reaction route to hollow ZrO2 microspheres with mesoporous shells. J Colloid Interface Sci 323:365–371. doi:10.1016/j.jcis.2008.04.030
Livage J, Doi K, Mazieres C (1968) Nature and thermal evolution of amorphous hydrated zirconium oxide. J Am Ceram Soc 51:349–353. doi:10.1111/j.1151-2916.1968.tb15952.x
Lomanova NA, Gusarov VV (2013) Influence of synthesis temperature on BiFeO3 nanoparticles formation. Nanosyst Phys Chem Math 4:696–705
Lu K (2008) Sintering of nanoceramics. Int Mater Rev 53:21–38
Lutterotti L (2010) Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 268:334–340. doi:10.1016/j.nimb.2009.09.053
Mit’kina T, Gerasko OA, Sokolov MN et al (2004) Syntheses and crystal structures of supramolecular compounds of tetranuclear ZrIV and HfIV aqua hydroxo complexes with macrocyclic cavitand cucurbituril. Russ Chem Bull 53:80–85. doi:10.1023/B:RUCB.0000024833.64526.ba
Murase Y, Kato E, Matsuhashi H (1972) Crystallization and phase transformation of low temperature form zirconia prepared from different starting materials. Nippon Kuguku Kuishi 1972:2329–2336. doi:10.1246/nikkashi.1972.2329
Oleinikov NN, Pentin IV, Murav’eva GP, Ketsko VA (2001) Highly disperse metastable ZrO2-based phases. Russ J Inorg Chem 46:1413–1420. doi:10.1017/CBO9781107415324.004
Palmero P (2015) Structural ceramic nanocomposites : a review of properties and powders’ synthesis methods. Nanomaterials 5:656–696. doi:10.3390/nano5020656
Phillippi CM, Mazdiyasni KS (1971) Infrared and Raman spectra of zirconia polymorphs. J Am Ceram Soc 54:254–258. doi:10.1111/j.1151-2916.1971.tb12283.x
Popkov VI, Almjasheva OV, Gusarov VV (2014) The investigation of the structure control possibility of nanocrystalline yttrium orthoferrite in its synthesis from amorphous powders. Russ J Appl Chem 87:1417–1421. doi:10.1134/S1070427214100048
Pozhidaeva OV, Korytkova EN, Romanov DP, Gusarov VV (2002) Formation of ZrO2 nanocrystals in hydrothermal media of various chemical compositions. Russ J Gen Chem 72:849–853
Rignanese G, Detraux F, Gonze X, Pasquarello A (2001) First-principles study of dynamical and dielectric properties of tetragonal zirconia. Phys Rev B 64:1–7. doi:10.1103/PhysRevB.64.134301
Shukla S, Seal S (2005) Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia. Int Mater Rev 50:45–64. doi:10.1179/174328005X14267
Singhal A, Toth LM, Lin JS, Affholter K (1996) Zirconium (IV) tetramer/octamer hydrolysis equilibrium in aqueous hydrochloric acid solution. J Am Chem Soc 6:11529–11534
Srinivasan R, Harris MB, Simpson SF et al (1988) Zirconium oxide crystal phase: the role of the pH and time to attain the final pH for precipitation of the hydrous oxide. J Mater Res 3:787–797. doi:10.1557/JMR.1988.0787
Srinivasan R, Davis BH, Burl CO, Hubbard CR (1992) Crystallization and phase transformation process in zirconia: an in situ high-temperature X-ray diffraction study. J Am Ceram Soc 75:1217–1222. doi:10.1002/0471440264.pst475
Varela JA, Whittemore OJ, Longo E (1990) Pore size evolution during sintering of ceramic oxides. Ceram Int 16:177–189. doi:10.1016/0272-8842(90)90053-I
Vasilevskaya AK, Almjasheva OV (2012) Features of phase formation in the ZrO2–TiO2 system under hydrothermal conditions. Nanosyst Phys Chem Math 3:75–81
Vasilevskaya AK, Almjasheva OV, Gusarov VV (2015) Formation of nanocrystals in the ZrO2–H2O system. Russ J Gen Chem 85:2673–2676. doi:10.1134/S1070363215120014
Vaßen R, Jarligo MO, Steinke T et al (2010) Overview on advanced thermal barrier coatings. Surf Coatings Technol 205:938–942. doi:10.1016/j.surfcoat.2010.08.151
Vasylkiv O, Sakka Y, Skorokhod VV (2003) Low-temperature processing and mechanical properties of zirconia and zirconia-alumina nanoceramics. J Am Ceram Soc 86:299–304. doi:10.1111/j.1151-2916.2003.tb00015.x
Zhang F, Chupas PJ, Lui SLA et al (2007) In situ study of the crystallization from amorphous to cubic zirconium oxide: Rietveld and reverse Monte Carlo analyses. Chem Mater 19:3118–3126. doi:10.1021/cm061739w