Peculiarities of Magnetic and Magnetocaloric Properties of Fe–Rh Alloys in the Range of Antiferromagnet–Ferromagnet Transition
Tóm tắt
Từ khóa
Tài liệu tham khảo
S. O. Mariager, F. Pressacco, G. Ingold, A. Caviezel, E. Mohr-Vorobeva, P. Beaud, S. L. Johnson, C. J. Milne, E. Mancini, S. Moyerman, et al., “Structural and magnetic dynamics of a laser induced phase transition in FeRh,” Phys. Rev. Lett. 108, 087 201 (2012). https://doi.org/10.1103/PhysRevLett.108.087201
A. X. Gray, D. W. Cooke, P. Krüger, C. Bordel, A. M. Kaiser, S. Moyerman, E. E. Fullerton, S. Ueda, Y. Yamashita, A. Gloskovskii, et al., “Electronic structure changes across the metamagnetic transition in FeRh via hard X-ray photoemission,” Phys. Rev. Lett. 108, 257 208 (2012). https://doi.org/10.1103/PhysRevLett.108.257208
D. W. Cooke, F. Hellman, C. Baldasseroni, C. Bordel, S. Moyerman, and E. E. Fullerton, “Thermodynamic measurements of Fe–Rh alloys,” Phys. Rev. Lett. 109, 255 901 (2012). https://doi.org/10.1103/PhysRevLett.109.255901
P. M. Derlet, “Landau–Heisenberg Hamiltonian model for FeRh,” Phys. Rev. B 85, 174 431 (2012). https://doi.org/10.1103/PhysRevB.85.174431
M. A. Vries, M. Loving, A. P. Mihai, L. H. Lewis, D. Heiman, and C. H. Marrows, “Hall-effect characterization of the metamagnetic transition in FeRh,” New J. Phys. 15, 013 008 (2013). https://doi.org/10.1088/1367-2630/15/1/013008
J. B. Staunton, R. Banerjee, M. Dias, A. Deak, and L. Szunyogh, “Fluctuating local moments, itinerant electrons, and the magnetocaloric effect: Compositional hypersensitivity of FeRh,” Phys. Rev. B 89, 054 427 (2014). https://doi.org/10.1103/PhysRevB.89.054427
J.-U. Thiele, S. Maat, and E. E. Fullerton, “FeRh/FePt exchange spring films for thermally assisted magnetic recording media,” Appl. Phys. Lett. 82, 2859–2861 (2003). https://doi.org/10.1063/1.1571232
A. M. Tishin, J. A. Rochev, and A. V. Gorelov, RU Patent No. 2 373 957 C2 (13 October 2016).
A. M. Tishin, J. A. Rochev, and A. V. Gorelov, UK Patent No. GB 2 458 229 (25 May 2011).
A. M. Tishin, J. A. Rochev, and A. V. Gorelov, WO Patent No. 2008/044963 (17 April 2008).
V. K. Pecharsky and K. A. Gschneidner, “Giant magnetocaloric effect in Gd5Si2Ge2,” Phys. Rev. Lett. 78, 4494–4497 (1997). https://doi.org/10.1103/PhysRevLett.78.4494
S. Fujieda, A. Fujita, and K. Fukamichi, “Large magnetocaloric effect in La(FexSi1 − x)13 itinerant-electron metamagnetic compounds,” Appl. Phys. Lett. 81, 1276–1278 (2002). https://doi.org/10.1063/1.1498148
O. Tegus, E. Brück, K. H. J. Buschow, and F. R. de Boer, “Transition-metal-based magnetic refrigerants for room-temperature applications,” Nature 415, 150–152 (2002). https://doi.org/10.1038/415150a
S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, M. P. Annaorazov, K. A. Asatryan, and A. L. Tyurin, “The magnetocaloric effect in Fe49Rh51 compound,” Phys. Lett. A 148, 363–366 (1990).
M. P. Annaorazov, K. A. Asatryan, G. Myalikgulyev, S. A. Nikitin, A. M. Tishin, and A. L. Tyurin, “Alloys of the Fe–Rh system as a new class of working material for magnetic refrigerators,” Cryogenics 32, 867–872 (1992). https://doi.org/10.1016/0011-2275(92)90352-B
S. A. Nikitin, M. P. Annaorazov, V. Yu. Bodriakov, and A. L. Tyurin, “Giant anomalies of the Young’s modulus and internal friction of FeRh alloy above the AFM–FM transition point,” Phys. Lett. A 176, 275–278 (1993). https://doi.org/10.1016/0375-9601(93)91050-F
S. A. Nikitin, G. Myalikgulyev, M. P. Annaorazov, A. L. Tyurin, R. W. Myndyev, and S. A. Akopyan, “Giant elastocaloric effect in FeRh alloy,” Phys. Lett. A 171, 234–236 (1992). https://doi.org/10.1016/0375-9601(92)90432-L
V. Franco, J. S. Bl’azquez, B. Ingale, and A. Conde, “The magnetocaloric effect and magnetic refrigeration near room temperature: Materials and models,” Ann. Rev. Mater. Res. 42, 305–342 (2012). https://doi.org/10.1146/annurev-matsci-062910-100356
K. Nishimura, Y. Nakazawa, L. Li, and K. Mori, “Magnetocaloric effect of Fe(Rh1 − xPdx) alloys,” Mater. Trans. 49, 1753–1756 (2008). https://doi.org/10.2320/matertrans.MRA2008080
M. Manekar and S. B. Roy, “Very large refrigerant capacity at room temperature with reproducible magnetocaloric effect in Fe 0.975 Ni 0.025 Rh,” J. Phys. D: Appl. Phys. 44, 242001 (2011). https://doi.org/10.1088/0022-3727/44/24/242001
R. Barua, F. Jiménez–Villacorta, and L. H. Lewis, “Towards tailoring the magnetocaloric response in FeRh-based ternary compounds,” J. Appl. Phys. 115, 17A903 (2014). https://doi.org/10.1063/1.4854975
M. Fallot and R. Horcart, Rev. Sci. 77, 498 (1939).
J. S. Kouvel, “Unusual nature of the abrupt magnetic transition in FeRh and its pseudobinary variants,” J. Appl. Phys. 37, 1257–1258 (1966). https://doi.org/10.1063/1.1708424
A. I. Zakharov, A. M. Kadomtseva, R. Z. Levitin, and E. G. Ponyatovskii, Soviet Physics – JETP 19, 1348 (1964).
L. Muldawer and F. deBergevin, “Antiferromagnetic-ferromagnetic transformation in FeRh,” J. Chem. Phys. 35, 1904–1905 (1961). https://doi.org/10.1063/1.1732175
M. J. Jiménez, A. B. Schvval, and G. F. Cabeza, “Ab initio study of FeRh alloy properties,” Comput. Mater. Sci. 172, 109 385 (2020). https://doi.org/10.1016/j.commatsci.2019.109385
E. Kren, L. Pal, and P. Szabo, “Neutron diffraction investigation of the antiferromagnetic-ferromagnetic transformation in the FeRh alloy,” Phys. Lett. 9, 297–298 (1964). https://doi.org/10.1016/0031-9163(64)90369-5
F. de Bergevin and L. Muldawer, C. R. Hebd. Seances Acad. Sci. 253, 1347 (1961).
Y. Feng, T. Fukuda, and T. Kakeshita “Temperature memory effect associated with a first order magnetic transition in FeRh,” Intermetallics 36, 57–60 (2013). https://doi.org/10.1016/j.intermet.2012.12.021
E. F. Bertaut, A. Delapalme, F. Forrat, G. Roult, F. D. Bergevin, and R. Pauthenet, “Magnetic structure work at the Nuclear Center of Grenoble.” J. Appl. Phys. 33, 1123–1124 (1962). https://doi.org/10.1063/1.1728627
N. Kunitomi, M. Kohgi, and Y. Nakai, “Diffuse scattering of neutrons in the antiferromagnetic phase of FeRh,” Phys. Lett. A 37, 333–334 (1971). https://doi.org/10.1016/0375-9601(71)90695-5
Cs. Hargitai, “On the aligned magnetic moment of the Rh atoms in the FeRh alloy,” Phys. Lett. 17, 178–179 (1965). https://doi.org/10.1016/0031-9163(65)90467-1
V. L. Moruzzi, P. M. Marcus, and S. L. Qiu, “Oscillatory magnetism in compounds of iron with 4d metals,” Phys. Rev. B 52, 3448–3452 (1995). https://doi.org/10.1103/PhysRevB.52.3448
J. S. Kouvel and C. C. Hartelius, “Anomalous magnetic moments and transformations in the ordered alloy FeRh,” J. Appl. Phys. 33, 1343–1344 (1962). https://doi.org/10.1063/1.1728721
M. E. Gruner, E. Hoffmann, and P. Entel, “Instability of the rhodium magnetic moment as the origin of the metamagnetic phase transition in α-FeRh,” Phys. Rev. B 67, 064 415 (2003). https://doi.org/10.1103/PhysRevB.67.064415
N. A. Zarkevich and D. D. Johnson, “Predicted martensitic and quantified metamagnetic transformations in FeRh,” arXiv:1702.03042 [cond-mat, physics:physics] (2017).
N. A. Zarkevich and D. D. Johnson, “FeRh ground state and martensitic transformation,” Phys. Rev. B 97, 014 202 (2018). https://doi.org/10.1103/PhysRevB.97.014202
M. R. Ibarra and P. A. Algarabel, “Giant volume magnetostriction in the FeRh alloy,” Phys. Rev. B 50, 4196–4199 (1994). https://doi.org/10.1103/PhysRevB.50.4196
P. A. Algarabel, M. R. Ibarra, C. Marquina, A. del Moral, J. Galibert, M. Iqbal, and S. Askenazy, “Giant room-temperature magnetoresistance in the FeRh alloy,” Appl. Phys. Lett. 66, 3061–3063 (1995). https://doi.org/10.1063/1.114278
A. M. Stoffel, “Magnetic and magneto-optic properties of FeRh and CrO2,” J. Appl. Phys. 40, 1238–1239 (1969). https://doi.org/10.1063/1.1657608
S. Yuasa, T. Akiyama, H. Miyajima, and Y. Otani, “Change in the resistivity of bcc and bct FeRh alloys at first-order magnetic phase transitions,” J. Phys. Soc. Jpn. 64, 3978–3985 (1969). https://doi.org/10.1143/JPSJ.64.3978
W. Lu, Y. Xu, X. Fang, Y. Song, and X. Li, “Kinetics of first order magnetostructural transition in single crystalline FeRh thin film,” in Proc. of the 2015 IEEE Magnetics Conference (INTERMAG), 1–1 (2015).
J. M. Lommel, “Thermodynamics of the first-order transition in FeRh,” J. Appl. Phys. 40, 3880–3881 (1969). https://doi.org/10.1063/1.1658300
J. B. McKinnon, D. Melville, and E. W. Lee, Solid State Phys. Conf. (University of Manchester, 1968).
E. A. Zavadskii and I. G. Fakidov,” Soviet Phys. Solid State, 9 (1967).
L. Pál, G. Zimmer, J. C. Picoch, and T. Tarnóczi, “The magnetic field dependence of the antiferromagnetic-ferromagnetic transition temperature in FeRh,” Acta Phys. 32, 135–140 (1972). https://doi.org/10.1007/BF03157301
C. Kittel, “Model of exchange-inversion magnetization,” Phys. Rev. 120, 335–342 (1960). https://doi.org/10.1103/PhysRev.120.335
J. A. Ricodeau and D. Melville, “Model of the antiferromagnetic-ferromagnetic transition in FeRh alloys,” J. Phys. F: Met. Phys. 2, 337 (1972). https://doi.org/10.1088/0305-4608/2/2/024
P. Perrot, A to Z of Thermodynamics (Oxford University, 1998).
E. Stern-Taulats, A. Planes, P. Lloveras, M. Barrio, J.‑L. Tamarit, S. Pramanick, S. Majumdar, C. Frontera, and L. Mañosa, “Barocaloric and magnetocaloric effects in Fe49Rh51,” Phys. Rev. B 89, 214 105 (2014). https://doi.org/10.1103/PhysRevB.89.214105
A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, E. T. Dilmieva, V. G. Shavrov, J. Cwik, I. S. Tereshina, M. V. Lyange, V. V. Khovaylo, G. Porcari, et al., “Properties of metamagnetic alloy Fe48Rh52 in high magnetic fields,” Bull. Russ. Acad. Sci.: Phys. 79, 1086–1088 (2015). https://doi.org/10.3103/S1062873815090105
M. P. Annaorazov, M. Ünal, S. A. Nikitin, A. L. Tyurin, K. A. Asatryan, and A. K. Dovletov, “Limit field of the AF–F transition in FeRh,” J. Alloys Compd. 348, 18–22 (2003). https://doi.org/10.1016/S0925-8388(02)00829-0
J.-U. Thiele, T. Hauet, and O. Hellwig, “Design of Co/Pd multilayer system with antiferromagnetic-to-ferromagnetic phase transition,” Appl. Phys. Lett. 92, 242 502 (2008). https://doi.org/10.1063/1.2946654
I. Dubenko, T. Samanta, A. Quetz, A. Kazakov, I. Rodionov, D. Mettus, V. Prudnikov, S. Stadler, P. Adams, J. Prestigiacomo, et al., “The comparison of direct and indirect methods for determining the magnetocaloric parameters in the Heusler alloy Ni50Mn34.8In14.2B,” Appl. Phys. Lett. 100, 192 402 (2012). https://doi.org/10.1063/1.4714539
I. Dubenko, T. Samanta, A. Quetz, A. Kazakov, I. Rodionov, D. Mettus, V. Prudnikov, S. Stadler, P. W. Adams, J. Prestigiacomo, et al., “The adiabatic temperature changes in the vicinity of the first-order paramagnetic-ferromagnetic transition in the Ni–Mn–In–B Heusler alloy,” IEEE Trans. Magn. 48, 3738–3741 (2012). https://doi.org/10.1109/TMAG.2012.2197596
E. G. Gerasimov and N. V. Mushnikov, “Magnetic Phase Transitions in Compounds with a Layered Crystal Structure,” Phys. Met. Metallogr. 119, 1309–1312 (2018). https://doi.org/10.1134/S0031918X18130069
M. Sharma, H. M. Aarbogh, J. -U. Thiele, S. Maat, E. E. Fullerton, and C. Leighton, “Magnetotransport properties of epitaxial MgO(001)/FeRh films across the antiferromagnet to ferromagnet transition,” J. Appl. Phys. 109, 083 913 (2011). https://doi.org/10.1063/1.3573503
J. van Driel, R. Coehoorn, G. J. Strijkers, E. Brück, and F. R. de Boer, “Compositional dependence of the giant magnetoresistance in FexRh1 – x thin films,” J. Appl. Phys. 85, 1026–1036 (1999). https://doi.org/10.1063/1.369224
I. Suzuki, T. Naito, M. Itoh, T. Sato, and T. Taniyama, “Clear correspondence between magnetoresistance and magnetization of epitaxially grown ordered FeRh thin films,” J. Appl. Phys. 109, 07C717 (2011). https://doi.org/10.1063/1.3556754
N. V. Baranov, P. E. Markin, S. V. Zemlyanski, H. Michor, and G. Hilscher, “Giant magnetoresistance in antiferromagnetically ordered FeRh and Mn2Sb based alloys,” J. Magn. Magn. Mater. 157–158, 401–402 (1996). https://doi.org/10.1016/0304-8853(95)00966-3
V. L. Moruzzi and P. M. Marcus, “Giant magnetoresistance in FeRh: A natural magnetic multilayer,” Phys. Rev. B 46, 14 198–14 200 (1992). https://doi.org/10.1103/PhysRevB.46.14198
J. Chen, J. Ma, Y. Zhang, L. Wu, and C. W. Nan, “Magnetic phase transition and large room temperature magnetoresistance in Ni doped FeRh films,” J. Alloys Compd. 741, 557–561 (2018). https://doi.org/10.1016/j.jallcom.2018.01.186
C. Koenig, “Self-consistent band structure of paramagnetic, ferromagnetic and antiferromagnetic ordered FeRh,” J. Phys. F: Met. Phys. 12, 1123. https://doi.org/10.1088/0305-4608/12/6/013
V. L. Moruzzi and P. M. Marcus, “Antiferromagnetic-ferromagnetic transition in FeRh,” Phys. Rev. B 46, 2864–2873 (1992). https://doi.org/10.1103/PhysRevB.46.2864
R. Y. Gu and V. P. Antropov, “Dominance of the spin-wave contribution to the magnetic phase transition in FeRh,” Phys. Rev. B 72, 012 403 (2005). https://doi.org/10.1103/PhysRevB.72.012403
L. M. Sandratskii and P. Mavropoulos, “Magnetic excitations and femtomagnetism of FeRh: A first-principles study,” Phys. Rev. B 83, 174 408 (2011). https://doi.org/10.1103/PhysRevB.83.174408
J. B. Staunton, R. Banerjee, M. Dias, A. Deak, and L. Szunyogh, “Fluctuating local moments, itinerant electrons, and the magnetocaloric effect: Compositional hypersensitivity of FeRh,” Phys. Rev. B 89, 054 427 (2014). https://doi.org/10.1103/PhysRevB.89.054427
I. Turek, J. Kudrnovský, V. Drchal, P. Weinberger, and P. H. Dederichs, “Theory of electron transport in FeRh-based natural magnetic multilayers,” Czech. J. Phys. 52, 203–208 (2002). https://doi.org/10.1023/A:1014415611741
I. Turek, J. Kudrnovský, V. Drchal, P. Weinberger, and P. H. Dederichs, “Ab initio theory of transport in FeRh-based natural magnetic multilayers,” J. Magn. Magn. Mater. 240, 162–164 (2002). https://doi.org/10.1016/S0304-8853(01)00743-0
V. L. Moruzzi and P. M. Marcus, “Structural effects on the magnetic properties of FePd and FeRh,” Phys. Rev. B 48, 16 106–16 108 (1993). https://doi.org/10.1103/PhysRevB.48.16106
A. X. Gray, D. W. Cooke, P. Krüger, C. Bordel, A. M. Kaiser, S. Moyerman, E. E. Fullerton, S. Ueda, Y. Yamashita, A. Gloskovskii, et al., “Electronic structure changes across the metamagnetic transition in FeRh via hard X-ray photoemission,” Phys. Rev. Lett. 108, 257 208 (2012). https://doi.org/10.1103/PhysRevLett.108.257208
R. Barua, F. Jiménez-Villacorta, and L. H. Lewis, “Predicting magnetostructural trends in FeRh-based ternary systems,” Appl. Phys. Lett. 103, 102 407 (2013). https://doi.org/10.1063/1.4820583
N. V. Baranov and E. A. Barabanova, “Electrical resistivity and magnetic phase transitions in modified FeRh compounds,” J. Alloys Compd. 219, 139–148 (1995). https://doi.org/10.1016/0925-8388(94)01375-6
P. Tu, A. J. Heeger, J. S. Kouvel, and J. B. Comly, “Mechanism for the first-order magnetic transition in the FeRh system,” J. Appl. Phys. 40, 1368–1369 (1969). https://doi.org/10.1063/1.1657670
W. Lu, N. T. Nam, and T. Suzuki, “First-order magnetic phase transition in FeRh–Pt thin films,” J. Appl. Phys. 105, 07A904 (2009). https://doi.org/10.1063/1.3065973
M. P. Annaorazov, S. A. Nikitin, A. L. Tyurin, K. A. Asatryan, and A. K. Dovletov, “Anomalously high entropy change in FeRh alloy,” J. Appl. Phys. 79, 1689–1695 (1996). https://doi.org/10.1063/1.360955
A. J. Heeger, “Pressure dependence of the FeRh first-order phase transition,” J. Appl. Phys. 41, 4751–4752 (1970). https://doi.org/10.1063/1.1658533
M. A. Khan, C. Koenig, and R. Riedinger, “Interband dielectric constants in antiferromagnetic, ferromagnetic and paramagnetic phases of FeRh,” J. Phys. F: Met. Phys. 13, L159 (1983). https://doi.org/10.1088/0305-4608/13/8/004
N. I. Kulikov, E. T. Kulatov, L. I. Vinokurova, and M. Pardavi-Horvath, “Electronic band structure and magnetic order in FeRh,” J. Phys. F: Met. Phys. 12, L91 (1982). https://doi.org/10.1088/0305-4608/12/6/004
R. H. Dean and G. A. Jakins, “Hyperfine field distribution in FeMo, FeRh and FeIr,” J. Phys. F: Met. Phys. 8, 1563 (1978). https://doi.org/10.1088/0305-4608/8/7/028
C. Stamm, J.-U. Thiele, T. Kachel, I. Radu, P. Ramm, M. Kosuth, J. Minár, H. Ebert, H. A. Dürr, W. Eberhardt et al., “Antiferromagnetic-ferromagnetic phase transition in FeRh probed by X-ray magnetic circular dichroism,” Phys. Rev. B 77, 184 401 (2008). https://doi.org/10.1103/PhysRevB.77.184401
L.M. Sandratskii and P. Buczek, “Lifetimes and chirality of spin waves in antiferromagnetic and ferromagnetic FeRh from the perspective of time-dependent density functional theory,” Phys. Rev. B 8, 020 406 (2012). https://doi.org/10.1103/PhysRevB.85.020406
A. Hernando, J. M. Rojo, J. C. Gómez Sal, and J. M. Barandiarán, “Density of states and indirect exchange in metallic systems,” Acta Phys. Pol., A 90, 1227 (1997).
K. Nakada and H. Yamada, “Fermi surface and antiferromagnetism of FeRh,” J. Magn. Magn. Mater. 310, 1046–1047 (2007). https://doi.org/10.1016/j.jmmm.2006.10.235
H. Ohnishi, K. Katoh, and K. Motizuki, “Magnetic phase diagram of system with two different atoms in unit cell,” J. Magn. Magn. Mater. 31–34, Part 1, 55–56 (1983). https://doi.org/10.1016/0304-8853(83)90150-6
A. Szajek and J. A. Morkowski, “Phase diagram of the metamagnetic FeRh,” J. Magn. Magn. Mater. 115, 171–173 (1992). https://doi.org/10.1016/0304-8853(92)90049-T
V. L. Moruzzi and P. M. Marcus, “Magnetic structure in FeRh from constrained total-energy calculations,” Solid State Commun. 83, 735–738 (1992). https://doi.org/10.1016/0038-1098(92)90154-2
H. Yamada, H. Shimizu, K. Yamamoto, and K. Uebayashi, “Structure and magnetism of 3d and 4d transition-metal alloys TT' (T = Mn, Fe and T' = Rh, Pd) with CuAu-I type ordered structure,” J. Alloys Compd. 415, 31–37 (2006). https://doi.org/10.1016/j.jallcom.2005.07.046
C. J. Schinkel and R. Hartog, Hochstenbach F.H.A.M., “On the magnetic and electrical properties of nearly equiatomic ordered FeRh alloys,” J. Phys. F: Met. Phys. 4, 1412 (1974). https://doi.org/10.1088/0305-4608/4/9/013
M. Alouani and M.A. Khan, “X-ray emission and absorption in intermetallic compounds: FeAl and FeRh,” J. Phys. F: Met. Phys. 17, 519 (1987). https://doi.org/10.1088/0305-4608/17/2/019
A. Jezierski and G. Borstel, “Electronic and magnetic properties of FeRhTM alloys,” J. Magn. Magn. Mater. 140–144, Part 1, 81–82 (1995). https://doi.org/10.1016/0304-8853(94)01146-X
P. A. Igoshev, E. E. Kokorina, and I. A. Nekrasov, “Study of the magnetocaloric effect in correlated metallic systems with Van Hove singularities in the electronic spectrum,” Fiz. Met. Metalloved., 100–106 (1991).
N. Pérez, A. Chirkova, K. P. Skokov, T. G. Woodcock, O. Gutfleisch, N. V. Baranov, and K. Nielsch, Schierning G., ”Electronic entropy change in Ni-doped FeRh” Mater. Today Phys. 9, 100 129 (2019). https://doi.org/10.1016/j.mtphys.2019.100129
Y. Khwaja and M. Nauciel-Bloch, “Off-stoichiometry effects in the antiferromagnetic FeRh alloy,” Phys. Status Solidi B 83, 413–424 (1977). https://doi.org/10.1002/pssb.2220830207
Y. Khwaja and M. Nauciel-Bloch, “The effect of a substitutional Fe impurity on the magnetic properties of the antiferromagnetic FeRh alloy,” Solid State Commun. 21, 529–532 (1977). https://doi.org/10.1016/0038-1098(77)90025-4
J. M. Lommel, “Magnetic and electrical properties of FeRh thin films,” J. Appl. Phys. 37, 1483–1484 (1966). https://doi.org/10.1063/1.1708527
S. Hashi, S. Yanase, Y. Okazaki, and M. Inoue, “A large thermal elasticity of the ordered FeRh alloy film with sharp magnetic transition,” IEEE Trans. Magn. 40, 2784–2786 (2004). https://doi.org/10.1109/TMAG.2004.832445
J. Cao, N. T. Nam, S. Inoue, H. Y. Y. Ko, N. N. Phuoc, and T. Suzuki, “Magnetization behaviors for FeRh single crystal thin films,” J. Appl. Phys. 103, 07F501 (2008). https://doi.org/10.1063/1.2828812
A. Heidarian, R. Bali, J. Grenzer, R. A. Wilhelm, R. Heller, O. Yildirim, J. Lindner, and K. Potzger, “Tuning the antiferromagnetic to ferromagnetic phase transition in FeRh thin films by means of low-energy/low fluence ion irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 358, 251–254 (2015). https://doi.org/10.1016/j.nimb.2015.06.027
M. Rosenberg, V. Kuncser, O. Crisan, A. Hernando, E. Navarro, and G. Filoti, “Mössbauer spectroscopy and magnetic study of FeRh,” J. Magn. Magn. Mater. 177–181, 135–136 (1998). https://doi.org/10.1016/S0304-8853(97)00662-8
A. Hernando, E. Navarro, M. Multigner, A. R. Yavari, D. Fiorani, M. Rosenberg, G. Filoti, and R. Caciuffo, “Boundary spin disorder in nanocrystalline FeRh alloys,” Phys. Rev. B 58, 5181–5184 (1998). https://doi.org/10.1103/PhysRevB.58.5181
A. Hernando, J. M. Rojo, R. Yavari, E. Navarro, J. M. Barandiarán, and M. R. Ibarra, “On the Antiferromagnetism of Fe–Rh,” Mater. Sci. Forum 235–238, 675–684 (1997). https://doi.org/10.4028/www.scientific.net/MSF.235-238.675
A. Hernando, E. Navarro, A. R. Yavari, D. Fiorani, and M. Rosenberg, “Magnetic properties of disordered grain boundaries in nanocrystalline FeRh alloys,” J. Magn. Magn. Mater. 203, 223–225 (1999). https://doi.org/10.1016/S0304-8853(99)00247-4
A. Hernando and E. Navarro, “Nanocrystalline ball milled fcc-FeRh alloys,” Mater. Sci. Forum 343–346, 787–792 (2000). https://doi.org/10.4028/www.scientific.net/MSF.343-346.787
V. Kuncser, M. Rosenberg, G. Principi, U. Russo, A. Hernando, E. Navarro, and G. Filoti, “Magnetic interactions in nanocrystalline FeRh alloys studied by in field Mössbauer spectroscopy,” J. Alloys Compd. 308, 21–29 (2000). https://doi.org/10.1016/S0925-8388(00)00821-5
E. Navarro, D. Fiorani, R. Yavari, M. Rosenberg, M. Multigner, A. Hernando, R. Caciuffo, D. Rinaldi, and S. Gialanella, “Low temperature magnetic properties of FCC FeRh obtained by ball milling,” Mater. Sci. Forum 269–272, 133–138 (1998). https://doi.org/10.4028/www.scientific.net/MSF.269-272.133
A. Hernando, E. Navarro, A. R. Yavari, D. Fiorani, and M. Rosenberg, “Grain-boundary structure in nanocrystalline ball-milled FeRh,” J. Metastable Nanocryst. Mater. 1, 191–196 (1999). doi 10.4028/www.scientific.net/JMNM.1.191
C. Paduani, “Magnetic properties of Fe–Rh alloys,” J. Appl. Phys. 90, 6251–6254 (2001). https://doi.org/10.1063/1.1413708
O. N. Mryasov, “Magnetic interactions and phase transformations in FeM, M = (Pt, Rh) ordered alloys,” Phase Transitions 78, 197–208 (2005). https://doi.org/10.1080/01411590412331316591
A. Deák, E. Simon, L. Balogh, L. Szunyogh, M. Dias Santos, and J. B. Staunton, “Metallic magnetism at finite temperatures studied by relativistic disordered moment description: Theory and applications,” Phys. Rev. B 89, 224 401 (2014). https://doi.org/10.1103/PhysRevB.89.224401
S. Jekal, S. H. Rhim, S. C. Hong, W. Son, and A. B. Shick, “Surface-termination-dependent magnetism and strong perpendicular magnetocrystalline anisotropy of an FeRh(001) thin film,” Phys. Rev. B 92, 064 410 (2015). https://doi.org/10.1103/PhysRevB.92.064410
S. Inoue, N. N. Phuoc, J. Cao, N. T. Nam, H. Y. Y. Ko, and T. Suzuki, “Structural and magneto-optical properties of FeRh thin films,” J. Appl. Phys. 103, 07B312 (2008). https://doi.org/10.1063/1.2834446
S. Inoue, N. T. Nam, N. N. Phuoc, J. Cao, KoH. Y. Yu, and T. Suzuki, “Magnetic and magneto-optical properties of FeRh thin films,” J. Magn. Magn. Mater. 320, 3113–3116 (2008). https://doi.org/10.1016/j.jmmm.2008.08.076
W. Lu, N. T. Nam, and T. Suzuki, “Effect of Pt doping on the structure, magnetic, and magneto-optical properties of ordered FeRh-Pt thin films,” IEEE Trans. Magn. 45, 2716–2719 (2009). https://doi.org/10.1109/TMAG.2009.2018650
W. Lu, B. Yan, and T. Suzuki, “Magnetic phase transition and magneto-optical properties in epitaxial FeRh0.95Pt0.05 (0 0 1) single-crystal thin film,” Scr. Mater. 61, 851–854 (2009). https://doi.org/10.1016/j.scriptamat.2009.07.014
E. Mancini, F. Pressacco, M. Haertinger, E. E. Fullerton, T. Suzuki, G. Woltersdorf, and C. H. Back, “Magnetic phase transition in iron–rhodium thin films probed by ferromagnetic resonance,” J. Phys. D: Appl. Phys. 46, 245 302 (2013). https://doi.org/10.1088/0022-3727/46/24/245302
C. Bordel, J. Juraszek, D. W. Cooke, C. Baldasseroni, S. Mankovsky, J. Minár, H. Ebert, S. Moyerman, E. E. Fullerton, and F. Hellman, “Fe spin reorientation across the metamagnetic transition in strained FeRh thin films,” Phys. Rev. Lett. 109, 117 201 (2012). https://doi.org/10.1103/PhysRevLett.109.117201
A. A. Amirov, V. V. Rodionov, V. Komanicky, V. Latyshev, E. Yu. Kaniukov, and V. V. Rodionova, “Magnetic phase transition and magnetoelectric coupling in FeRh/PZT film composite,” J. Magn. Magn. Mater. 479, 287–290 (2019). https://doi.org/10.1016/j.jmmm.2019.01.079
Y. Xie, Q. Zhan, T. Shang, H. Yang, Y. Liu, B. Wang, and R.-W. Li, “Electric field control of magnetic properties in FeRh/PMN-PT heterostructures,” AIP Adv. 8, 055816 (2018). https://doi.org/10.1063/1.5003435
I. Fina, A. Quintana, J. Padilla-Pantoja, X. Martí, F. Macià, F. Sánchez, M. Foerster, L. Aballe, J. Fontcuberta, and J. Sort, “Electric-field-adjustable time-dependent magnetoelectric response in martensitic FeRh alloy,” ACS Appl. Mater. Interfaces 9, 15 577–15 582 (2017). https://doi.org/10.1021/acsami.7b00476
K. Qiao, F. Hu, Y. Liu, J. Li, H. Kuang, H. Zhang, W. Liang, J. Wang, J. Sun, and B. Shen, “Novel reduction of hysteresis loss controlled by strain memory effect in FeRh/PMN-PT heterostructures,” Nano Energy 59, 285–294 (2019). https://doi.org/10.1016/j.nanoen.2019.02.044
Q. B. Hu, J. Li, C. C. Wang, Z. J. Zhou, Q. Q. Cao, T. J. Zhou, D. H. Wang, and Y. W. Du, “Electric field tuning of magnetocaloric effect in FeRh0.96Pd0.04/PMN-PT composite near room temperature,” Appl. Phys. Lett. 110, 222 408 (2017). https://doi.org/10.1063/1.4984901
Z. Feng, H. Yan, and Z. Liu, “Electric-Field Control of Magnetic Order: From FeRh to topological antiferromagnetic spintronics,” Adv. Electron. Mater. 5, 1 800 466 (2019). https://doi.org/10.1002/aelm.201800466
C. Q. Yu, H. Li, Y. M. Luo, L. Y. Zhu, Z. H. Qian, and T. J. Zhou, “Thickness-dependent magnetic order and phase-transition dynamics in epitaxial Fe-rich FeRh thin films,” Phys. Lett. A 383, 2424–2428 (2019). https://doi.org/10.1016/j.physleta.2019.04.058
Y. Xie, Q. Zhan, T. Shang, H. Yang, B. Wang, J. Tang, and R.-W. Li, “Effect of epitaxial strain and lattice mismatch on magnetic and transport behaviors in metamagnetic FeRh thin films,” AIP Adv. 7, 056 314 (2017). https://doi.org/10.1063/1.4976301
A. Ceballos, Z. Chen, O. Schneider, C. Bordel, L.‑W. Wang, and F. Hellman, “Effect of strain and thickness on the transition temperature of epitaxial FeRh thin-films,” Appl. Phys. Lett. 111, 172 401 (2017). https://doi.org/10.1063/1.4997901
V. Kuncser, R. Nicula, U. Ponkratz, A. Jianu, M. Stir, E. Burkel, and G. Filoti, “Structural phase transition induced in Fe50Rh50 alloys by high pressure,” J. Alloys Compd. 386, 8–11 (2005). https://doi.org/10.1016/j.jallcom.2004.04.139
A. M. Chirkova, A. S. Volegov, D. S. Neznakhin, E. A. Stepanova, and N. V. Baranov, “Pressure induced AF–F–AF magnetic phase transformations in Pd substituted FeRh compound,” Solid State Phenom. 190, 299–302 (2012). https://doi.org/10.4028/www.scientific.net/SSP.190.299
S. Yuasa, H. Miyajima, Y. Otani, K. Tsuji, Y. Katayama, K. Kusumi, H. Yokoyama, K. Yaoita, and O. Shimomura, “First-order magnetic phase transition in bcc FeRh–Ir alloy under high pressures up to 6.2 GPa,” J. Phys. Soc. Jpn. 63, 855–858 (1994). https://doi.org/10.1143/JPSJ.63.855
Y. Kaneta, S. Ishino, Y. Chen, S. Iwata, and A. Iwase, “Theoretical calculations for magnetic property of FeRh inter-metallic compound with site-exchange defects,” Jpn. J. Appl. Phys. 50, 105 803 (2011). https://doi.org/10.1143/JJAP.50.105803
Y. Kibata, F. Hori, R. Oshima, M. Komatsu, and M. Kiritani, “Defect structures of intermetallic FeRh alloys induced by high-speed deformation,” In Proceedings of the Symposium BB—Defect Properties and Related Phenomena in Intermetallic Alloys (2002) p. 753.
R. Oshima, F. Hori, Y. Kibata, M. Komatsu, and M. Kiritani, “Defect structures and phase transitions of FeRh alloys deformed at high speed deformation,” Mater. Sci. Eng., A 350, 139–144 (2003). https://doi.org/10.1016/S0921-5093(02)00715-3
R. Oshima, F. Hori, M. Fukuzumi, M. Komatsu, and M. Kiritani, “Positron annihilation study on defects and phase transition of FeRh alloys subjected to high-speed deformation,” Radiat. Eff. Defects Solids 157, 127–135 (2002). https://doi.org/10.1080/10420150211400
E. Navarro, A. R. Yavari, A. Hernando, C. Marquina, and M. R. Ibarra, “Enthalpies of B2 antiferro-ferromagnetic and metastable fcc-B2 transformations in FeRh,” Solid State Commun. 100, 57–60 (1996). https://doi.org/10.1016/0038-1098(96)00378-X
L. J. Swartzendruber, “The Fe−Rh (Iron-Rhodium) system,” Bull. Alloy Phase Diagrams 5, 456–462 (1984). https://doi.org/10.1007/BF02872896
L. Zsoldos, “Lattice Parameter Change of FeRh alloys due to antiferromagnetic-ferromagnetic transformation,” Phys. Status Solidi B 20, 25–28 (1967). https://doi.org/10.1002/pssb.19670200148
C. C. Chao, P. Duwez, and C. C. Tsuei, “Metastable fcc Fe–Rh alloys and the Fe–Rh phase diagram,” J. Appl. Phys. 42, 4282–4284 (1971). https://doi.org/10.1063/1.1659766
G. Shirane, C. W. Chen, P. A. Flinn, and R. Nathans, “Mössbauer study of hyperfine fields and isomer shifts in the Fe–Rh alloys,” Phys. Rev. 131, 183–190 (1963). https://doi.org/10.1103/PhysRev.131.183
K. H. J. Buschow, P. G. van Engen, and R. Jongebreur, “Magneto-optical properties of metallic ferromagnetic materials,” J. Magn. Magn. Mater. 38, 1–22 (1983). https://doi.org/10.1016/0304-8853(83)90097-5
P. M. Marcus, V. L. Moruzzi, and S. L. Qiu, “Type-II antiferromagnetism in compounds of iron with 4d metals,” Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11 933–11 935 (1996).
K. Kobayashi, H. Maruyama, T. Iwazumi, N. Kawamura, and H. Yamazaki, “Magnetic circular X-ray dichroism at Pd L2,3-edges in Fe–Pd alloys,” Solid State Commun. 97, 491–496 (1996). https://doi.org/10.1016/0038-1098(95)00708-3
M. Takahashi and R. Oshima, “Annealing effect on phase transition of equiatomic FeRh alloy,” Mater. Trans., JIM. 36, 735–742 (1995). https://doi.org/10.2320/matertrans1989.36.735
E. Hofer, “Magnetic properties of Rh-rich FeRh alloy,” J. Phys. Chem. Solids 27, 1552–1555 (1966). https://doi.org/10.1016/0022-3697(66)90151-X
M. Manekar and S. B. Roy, “Reproducible room temperature giant magnetocaloric effect in Fe–Rh,” J. Phys. D: Appl. Phys. 41, 192 004 (2008). https://doi.org/10.1088/0022-3727/41/19/192004
J. M. Lommel and J. S. Kouvel, “Effects of mechanical and thermal treatment on the structure and magnetic transitions in FeRh,” J. Appl. Phys. 38, 1263–1264 (1967). https://doi.org/10.1063/1.1709570
C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci. 46, 1–184 (2001). https://doi.org/10.1016/S0079-6425(99)00010-9
C. Marquina, M. R. Ibarra, P. A. Algarabel, A. Hernando, P. Crespo, P. Agudo, A. R. Yavari, and E. Navarro, “Magnetic and magnetoelastic behavior of mechanically alloyed FeRh compound,” J. Appl. Phys. 81, 2315–2320 (1997). https://doi.org/10.1063/1.364290
H. Morita, K. Koike, T. Kaneko, K. Watanabe, and H. Fujimori, “Hysteresis loop of thermomagnetic curve of FeRh alloys,” J. Magn. Magn. Mater. 140–144, 77–78 (1995). https://doi.org/10.1016/0304-8853(94)00844-2
P. Kushwaha, A. Lakhani, R. Rawat, and P. Chaddah, “Influence of thermal annealing and magnetic field on first order magnetic transition in Pd substituted FeRh,” J. Phys.: Conf. Ser. 200, 032 038 (2010). https://doi.org/10.1088/1742-6596/200/3/032038
C. F. Sánchez–Valdés, R. R. Gimaev, M. López-Cruz, J. L. Sánchez Llamazares, V. I. Zverev, A. M. Tishin, A. M. G. Carvalho, D. J. M. Aguiar, Y. Mudryk, and V. K. Pecharsky, “The effect of cooling rate on magnetothermal properties of Fe49Rh51,” J. Magn. Magn. Mater. 498, 166 130 (2020). https://doi.org/10.1016/j.jmmm.2019.166130
A. Chirkova, K. P. Skokov, L. Schultz, N. V. Baranov, O. Gutfleisch, and T. G. Woodcock, “Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions,” Acta Mater. 106, 15–21 (2016). https://doi.org/10.1016/j.actamat.2015.11.054
A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (CRC Press, 2003). ISBN 978-1-4200-3337-3.
M. P. Annaorazov, K. A. Asatryan, S. A. Nikitin, A. M. Tishin, and A. L. Tyurin, Pis’ma Zh. Tekh. Fiz., 12 (1991).
M. P. Annaorazov, H. M. Güven, and K. Bärner, “COP of cooling cycles around the AF–F transition in FeRh based on experimental data,” J. Alloys Compd. 397, 26–30 (2005). https://doi.org/10.1016/j.jallcom.2005.01.016
Y. I. Spichkin and A. M. Tishin, “Magnetocaloric effect at the first-order magnetic phase transitions,” J. Alloys Compd. 403, 38–44 (2005). https://doi.org/10.1016/j.jallcom.2005.05.026
Y. I. Spichkin and A. M. Tishin, “Thermodynamic model of the magnetocaloric effect near the first-order magnetic phase transitions,” J. Magn. Magn. Mater. 290–291, 700–702 (2005). https://doi.org/10.1016/j.jmmm.2004.11.341
A. M. Aliev, A. B. Batdalov, L. N. Khanov, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, R. M. Grechishkin, A. R. Kaul’, and V. Sampath, “Reversible magnetocaloric effect in materials with first order phase transitions in cyclic magnetic fields: Fe48Rh52 and Sm0.6Sr0.4MnO3,” Appl. Phys. Lett. 109, 202 407 (2016). https://doi.org/10.1063/1.4968241
K. P. Skokov, K.-H. Müller, J. D. Moore, J. Liu, A. Yu. Karpenkov, M. Krautz, and O. Gutfleisch, “Influence of thermal hysteresis and field cycling on the magnetocaloric effect in LaFe11.6Si1.4,” J. Alloys Compd. 552, 310–317 (2013). https://doi.org/10.1016/j.jallcom.2012.10.008
V. I. Zverev, A. M. Tishin, and M. D. Kuz’min, “The maximum possible magnetocaloric ΔT effect,” J. Appl. Phys. 107, 043 907 (2010). https://doi.org/10.1063/1.3309769
S. Yu. Dan’kov, A. M. Tishin, V. K. Pecharsky, and K. A. Gschneidner, “Magnetic phase transitions and the magnetothermal properties of gadolinium,” Phys. Rev. B 57, 3478–3490 (1998). https://doi.org/10.1103/PhysRevB.57.3478
A. M. Tishin, “Magnetic refrigeration in the low-temperature range,” J. Appl. Phys. 68, 6480–6484 (1990). https://doi.org/10.1063/1.347186
K. A. Gschneidner and V. K. Pecharsky, ”Intermetallic compounds for magnetic refrigeration,” in Intermetallic Compounds – Principles and Practice, Ed. by J. H. Westbrook and R. L. Fleischer (Wiley, New York, 2001), Vol. 3.
S. Yu. Dan’kov, T. I. Ivanova, and A. M. Tishin, Pis’ma JTP 18.
S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, M. P. Annaorazov, K. A. Asatryan, and A. L. Tyurin, “The magnetocaloric effect in Fe49Rh51 compound,” Phys. Lett. A 148, 363–366 (1990). https://doi.org/10.1016/0375-9601(90)90819-A
Z. B. Guo, Y. W. Du, J. S. Zhu, H. Huang, W. P. Ding, and D. Feng, “Large magnetic entropy change in perovskite-type manganese oxides,” Phys. Rev. Lett. 78, 1142–1145 (1997). https://doi.org/10.1103/PhysRevLett.78.1142
K. A. Jr. Gschneidner and V. K. Pecharsky, “Magnetocaloric materials,” Ann. Rev. Mater. Sci. 2000 30, 387–429. https://doi.org/10.1146/annurev.matsci.30.1.387
V. K. Pecharsky and Jr. K. A. Gschneidner, “Giant magnetocaloric effect in Gd5Si2Ge2,” Phys. Rev. Lett. 78, 4494–4497 (1997). https://doi.org/10.1103/PhysRevLett.78.4494
O. Tegus, E. Brück, L. Zhang, Dagula, K. H. J. Buschow, and F. R. de Boer, “Magnetic-phase transitions and magnetocaloric effects,” Phys. B: Condens. Matter 319, 174–192 (2002). https://doi.org/10.1016/S0921-4526(02)01119-5
T. Hashimoto, T. Numasawa, M. Shino, and T. Okada, “Magnetic refrigeration in the temperature range from 10 K to room temperature: the ferromagnetic refrigerants,” Cryogenics 21, 647–653 (1981). https://doi.org/10.1016/0011-2275(81)90254-X
H. Wada and Y. Tanabe, “Giant magnetocaloric effect of MnAs1 – xSbx,” Appl. Phys. Lett. 79, 3302–3304 (2001). https://doi.org/10.1063/1.1419048
F. Hu, B. Shen, J. Sun, Z. Cheng, G. Rao, and X. Zhang, “Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6,” Appl. Phys. Lett. 78, 3675–3677 (2001). https://doi.org/10.1063/1.1375836
F. Hu, J. Sun, G. Wu, and B. Shen, “Magnetic entropy change in Ni50.1Mn20.7Ga29.6 single crystal,” J. Appl. Phys. 90, 5216–5219 (2001). https://doi.org/10.1063/1.1410890
F. Hu, B. Shen, J. Sun, G. Wang, and Z. Cheng, “Very large magnetic entropy change near room temperature in LaFe11.2Co0.7Si1.1,” Appl. Phys. Lett. 80, 826–828 (2002). https://doi.org/10.1063/1.1447592
T. Zhou, M. K. Cher, L. Shen, J. F. Hu, and Z. M. Yuan, “On the origin of giant magnetocaloric effect and thermal hysteresis in multifunctional α-FeRh thin films,” Phys. Lett. A 377, 3052–3059 (2013). https://doi.org/10.1016/j.physleta.2013.09.027
S. Inoue, H. Y. Y. Ko, and T. Suzuki, “Magnetic properties of single-crystalline FeRh Alloy thin films,” IEEE Trans. Magn. 44, 2875–2878 (2008). https://doi.org/10.1109/TMAG.2008.2001846
H. Y. Y. Ko and T. Suzuki, “Synthesis and magnetic properties of self-organized FeRh nanoparticles.,” J. Appl. Phys. 101, 09J103 (2007). https://doi.org/10.1063/1.2711285
I. Radu, C. Stamm, N. Pontius, T. Kachel, P. Ramm, J. -U. Thiele, H. A. Dürr, and C. H. Back, “Laser-induced generation and quenching of magnetization on FeRh studied with time-resolved X-ray magnetic circular dichroism,” Phys. Rev. B 81, 104 415 (2010). https://doi.org/10.1103/PhysRevB.81.104415
F. Quirin, M. Vattilana, U. Shymanovich, A.-E. El-Kamhawy, A. Tarasevitch, J. Hohlfeld, D. Linde, and K. Sokolowski-Tinten, “ Structural dynamics in FeRh during a laser-induced metamagnetic phase transition,” Phys. Rev. B 85, 020 103 (2012). https://doi.org/10.1103/PhysRevB.85.020103
G. Ju, J. Hohlfeld, B. Bergman, R. J. M. van de Veerdonk, O. N. Mryasov, J. -Y. Kim, X. Wu, D. Weller, and B. Koopmans, “Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in FeRh thin films,” Phys. Rev. Lett. 93, 197 403 (2004). https://doi.org/10.1103/PhysRevLett.93.197403
U. Shymanovich, M. Nicoul, W. Lu, A. Tarasevitch, M. Kammler, M. H. Hoegen, D. von Linde, and K. von der Sokolowski-Tinten, “Coherent acoustic and optical phonons in laser-excited solids studied by ultrafast time-resolved X-ray diffraction,” in Proceedings of the AIP Conference Proceedings (AIP Publishing, 2010), vol. 1278, pp. 558–566.
J.-U. Thiele, M. Buess, and C. H. Back, “Spin dynamics of the antiferromagnetic-to-ferromagnetic phase transition in FeRh on a sub-picosecond time scale,” Appl. Phys. Lett. 85, 2857–2859 (2004). https://doi.org/10.1063/1.1799244
S. Günther, C. Spezzani, R. Ciprian, C. Grazioli, B. Ressel, M. Coreno, L. Poletto, P. Miotti, M. Sacchi, G. Panaccione, et al., “Testing spin-flip scattering as a possible mechanism of ultrafast demagnetization in ordered magnetic alloys,” Phys. Rev. B 90, 180 407 (2014). https://doi.org/10.1103/PhysRevB.90.180407
B. Bergman, G. Ju, J. Hohlfeld, R. J. M. Van De Veerdonk, J. -Y. Kim, X. Wu, D. Weller, and B. Koopmans, “Identifying growth mechanisms for laser-induced magnetization in FeRh,” Phys. Rev. B: Condens. Matter Mater. Phys., 73 (2006). https://doi.org/10.1103/PhysRevB.73.060407
D. J. Keavney, Y. Choi, M. V. Holt, V. Uhlir, D. Arena, E. E. Fullerton, P. J. Ryan, and J. -W. Kim, “Phase coexistence and kinetic arrest in the magnetostructural transition of the ordered alloy FeRh,” Sci. Rep. 8, 1–7 (2018). https://doi.org/10.1038/s41598-018-20101-0
R. Barua, F. Jiménez-Villacorta, and L. H. Lewis, “Towards tailoring the magnetocaloric response in FeRh-based ternary compounds,” J. Appl. Phys. 115, 17A903 (2014). https://doi.org/10.1063/1.4854975
R. Gimaev, V. Zverev, Y. Spichkin, A. Tishin, and T. Miyanaga, “Peculiarities of the magnetocaloric effect in FeRh-based alloys in the vicinity of the first order magnetic phase transition,” EPJ Web Conf. 185, 05008 (2018). https://doi.org/10.1051/epjconf/201818505008
V. I. Zverev, A. M. Saletsky, R. R. Gimaev, A. M. Tishin, T. Miyanaga, and J. B. Staunton, “Influence of structural defects on the magnetocaloric effect in the vicinity of the first order magnetic transition in Fe50.4Rh49.6,” Appl. Phys. Lett. 108, 192 405 (2016). https://doi.org/10.1063/1.4949355
P. A. Igoshev, E. E. Kokorina, and I. A. Nekrasov, “Investigation of the magnetocaloric effect in correlated metallic systems with Van Hove singularities in the electron spectrum,” Phys. Met. Metallogr. 118, 207–216 (2017). https://doi.org/10.1134/S0031918X17030048
E. Z. Valiev and A. N. Pirogov, “Physical conditions for realization of large magnetocaloric effect in magnets,” Phys. Met. Metallogr. 119, 1317–1320 (20180. https://doi.org/10.1134/S0031918X18130227
S. M. Emelyanova, N. G. Bebenin, V. P. Dyakina, V. V. Chistyakov, T. V. Dyachkova, A. P. Tyutyunnik, R. L. Wang, C. P. Yang, F. Sauerzopf, and V. V. Marchenkov, “Magnetocaloric Effect in Ni50Mn36Sb14 – xZx (Z = Al, Ge, x = 0, 2) Heusler Alloys,” Phys. Met. Metallogr. 119, 121–126 (2018). https://doi.org/10.1134/S0031918X18020047
N. V. Baranov, S. V. Zemlyanski, and K. Kamenev, “Electrical resistivity and phase transitions in FeRh based compounds: influence of spin fluctuations,” In Itinerant Electron Magnetism: Fluctuation Effects, Ed. by D. Wagner, W. Brauneck, and A. Solontsov (NATO Science Series, Springer Netherlands, 1998) pp. 345–351. ISBN 978-0-7923-5203-7.
S. Yuasa, Y. Otani, H. Miyajima, and A. Sakuma, “Magnetic properties of bcc FeRh1 – xMx systems,” IEEE Trans. J. Magn. Jpn. 9, 202–209 (1994). https://doi.org/10.1109/TJMJ.1994.4565981
A. A. Inishev, E. G. Gerasimov, N. V. Mushnikov, P. B. Terent’ev, and V. S. Gaviko,” Structure, magnetic and magnetocaloric properties of nonstoichiometric TbCo2Mnx compounds,” Phys. Met. Metallogr. 119, 1036–1042 (2018). https://doi.org/10.1134/S0031918X18110042
E. E. Kokorina and M. V. Medvedev, “Magnetocaloric effect in an ising ferromagnet in the constant coupling approximation,” Phys. Met. Metallogr. 119, 1050–1055 (2018). https://doi.org/10.1134/S0031918X18110091
E. E. Kokorina and M. V. Medvedev, “Specific features of the magnetocaloric effect in a uniaxial paramagnet with Kramers ions,” Phys. Met. Metallogr. 120, 925–929 (2019). https://doi.org/10.1134/S0031918X19100053
A. M. Tishin, V. K. Pecharsky, A. O. Pecharsky, K. A. Gschneidner Jr. Unpublished Results.
S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, M. P. Annaorazov, K. A. Asatryan, and A. L. Tyurin, Working Body of Magnetic Refrigerator (1992).
M. P. Annaorazov, M. Unal, S. A. Nikitin, A. L. Tyurin, and K. A. Asatryan, “Magnetocaloric heat-pump cycles based on the AF–F transition in Fe–Rh alloys,” J. Magn. Magn. Mater. 251, 61–73 (2002). https://doi.org/10.1016/S0304-8853(02)00477-8
M. P. Annaorazov, S. A. Nikitin, A. L. Tyurin, S. A. Akopyan, and R. W. Myndyev, “Heat pump cycles based on the AF–F transition in Fe–Rh alloys induced by tensile stress,” Int. J. Refrig. 25, 1034–1042 (2002). https://doi.org/10.1016/S0140-7007(02)00028-2
N. V. Baranov, Y. A. Barabanova, and A. I. Kozlov, “The effect of partial substitution of rhodium on the magnetic and electrical properties of the FeRh alloy,” Phys. Met. Metallogr. 72, 65–70 (1991).
J. Nelson and S. Sanvito, “Predicting the Curie temperature of ferromagnets using machine learning,” Phys. Rev. Mater. 3, 104 405 (2019). https://doi.org/10.1103/PhysRevMaterials.3.104405
Yu. I. Spichkin, A. P. Pyatakov, A. M. Tishin, and V. I. Zverev, RU Patent No. 2 563 387 C2 (20 September 2015).
I. Astefanoaei, R. Gimaev, V. Zverev, and A. Stancu, “Modelling of working parameters of Gd and FeRh nanoparticles for magnetic hyperthermia,” Mater. Res. Express 6, 125 089 (2019). https://doi.org/10.1088/2053-1591/ab5c4a
A. M. Tishin, Y. I. Spichkin, V. I. Zverev, and P. W. Egolf, “A review and new perspectives for the magnetocaloric effect: New materials and local heating and cooling inside the human body.” Int. J. Refrig. 68, 177–186 (2016). https://doi.org/10.1016/j.ijrefrig.2016.04.020
C. W. Barton, L. Saharan, G. Hrkac, and T. Thomson, “Effect of Fe under layer in ultrathin FeRh films,” in Proc. of the 2015 IEEE Magnetics Conference (INTERMAG) (2015).
T. J. Zhou, K. Cher, J. F. Hu, Z. M. Yuan, and B. Liu, “The concept and fabrication of exchange switchable trilayer of FePt/FeRh/FeCo with reduced switching field,” J. Appl. Phys. 111, 07C116 (2012). https://doi.org/10.1063/1.3677838
N. T. Nam, W. Lu, and T. Suzuki, “Exchange bias of ferromagnetic/antiferromagnetic in FePt/FeRh bilayers,” J. Appl. Phys. 105, 07D708 (2009). https://doi.org/10.1063/1.3062813
F. Garcia-Sanchez, O. Chubykalo-Fesenko, O. N. Mryasov, and R. W. Chantrell, “Multiscale models of hard-soft composite media,” J. Magn. Magn. Mater. 303, 282–286 (2006). https://doi.org/10.1016/j.jmmm.2006.01.135
J.-U. Thiele, S. Maat, J. L. Robertson, and E. E. Fullerton, “Magnetic and structural properties of FePt–FeRh exchange spring films for thermally assisted magnetic recording media,” IEEE Trans. Magn. 40, 2537–2542 (2004). https://doi.org/10.1109/TMAG.2004.829325
F. Garcia Sanchez, O. Chubykalo-Fesenko, O. Mryasov, and R. W. Chantrell, “Multiscale modelling of hysteresis in FePt/FeRh bilayer,” Phys. B: Condens. Matter 372, 328–331 (2006). https://doi.org/10.1016/j.physb.2005.10.078