Peculiarities of Electrochemical Behavior of Porous Carbon Electrodes of Supercapacitors in Aqueous Solutions of Salts of Alkali Metals

Surface Engineering and Applied Electrochemistry - Tập 54 - Trang 255-260 - 2018
D. G. Gromadskyi1, L. I. Hromadska1,2
1SerEnergy, Aalborg, Denmark
2Institute for Sorption and Problems of Endoecology of National Academy of Sciences of Ukraine, Kiev, Ukraine

Tóm tắt

Electrochemical behavior of porous carbon electrodes with different densities (0.75 and 0.35 g/cm3) used in supercapacitors with aqueous solutions of lithium, sodium and potassium sulfates was studied. It was shown that Li2SO4 solution is the most suitable for high-density electrodes, whereas K2SO4 solution is better for low-density electrodes. Experimental data obtained by means of cyclic voltammetric and impedance curves demonstrate a mutual influence of the porous structure of the electrode materials and diameters of solvated and bare ions on the values of specific capacitance and resistance. This should be taken into account when an electrode/electrolyte system is chosen for high-efficiency energy storage devices.

Tài liệu tham khảo

Maletin, Y., Strelko, V., Stryzhakova, N., Zelinsky, S., et al., Energy Environ. Res., 2013, vol. 3, pp. 156–165. Everett, D.H., Pure Appl. Chem., 1972, vol. 31, pp. 579–638. Maletin, Y., Novak, P., Shembel, E., Izotov, Y., et al., Appl. Phys. A: Mater. Sci. Process., 2006, vol. 82, pp. 653–657. Zhang, L.L. and Zhao, X.S., Chem. Soc. Rev., 2009, vol. 38, pp. 2520–2531. Wang, G., Zhang, L., and Zhang, J., Chem. Soc. Rev., 2012, vol. 41, pp. 797–828. Zhong, C., Deng, Y., Hu, W., Qiao, J., et al., Chem. Soc. Rev., 2015, vol. 44, pp. 7484–7539. Hromads’kyi, D.H., Fateev, Y.F., Stryzhakova, N.H., and Maletin, Y.A., Mater. Sci., 2010, vol. 46, pp. 412–417. Gromadskyi, D.G., Fateev, Y.F., and Maletin, Y.A., Corros. Sci., 2013, vol. 69, pp. 191–196. Khomenko, V., Raymundo-Piñero, E., and Béguin, F., J. Power Sources, 2010, vol. 195, pp. 4234–4241. Gromadskyi, D.G., Chae, J.H., Norman, S.A., and Chen, G.Z., Appl. Energy, 2015, vol. 159, pp. 39–50. Chmiola, J., Largeot, C., Taberna, P.L., Simon, P., et al., Angew. Chem., 2008, vol. 120, pp. 3440–3443. Nightingale, E.R., Jr., J. Phys. Chem., 1959, vol. 63, pp. 1381–1387. Qu, Q.T., Wang, L.C., Yang, Y., Shi, Y., et al., Electrochem. Commun., 2008, vol. 10, pp. 1652–655. Ruiz, R., Blanco, C., Santamaría, R., Juárez-Galán, J.M., et al., Microporous Mesoporous Mater., 2008, vol. 110, pp. 431–435. Chae, J.H. and Chen, G.Z., Particuology, 2014, vol. 15, pp. 9–17. Hasegawa, G., Kanamori, K., Nakanishi, K., and Abe, T., J. Phys. Chem. C, 2012, vol. 116, pp. 26197–26203. Fic, K., Lota, G., Meller, M., and Frackowiak, E., Energy Environ. Sci., 2012, vol. 5, pp. 5842–5850. Activated carbon for supercapacitors. http://www.kuraraychemical.com/products/sc/capa-citor.htm. Accessed August 9, 2017. Barbieri, O., Hahn, M., Herzog, A., and Kötz, R., Carbon, 2005, vol. 43, pp. 1303–1310. Gromadskyi, D.G., J. Chem. Sci., 2016, vol. 128, pp. 1011–1017. Gromadskyi, D.G. and Hromadska, L.I., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 6, pp. 584–593. Revie, R.W. and Uhlig, H.H., Corrosion and Corrosion Control, New York: Wiley, 2008. Stevenson, A.J., Gromadskyi, D.G., Hu, D., Chae, J., et al., In Nanocarbons for Advanced Energy Storage, Feng, X., Ed., Weinheim: Willey, 2015, vol. 1, pp. 179–210. Chen, G.Z., Int. Mater. Rev., 2017, vol. 62, pp. 173–202. Gromadskyi, D.G., Surf. Eng. Appl. Electrochem., 2016, vol. 52, pp. 289–299. Gromadskyi, D.G., Chervoiuk, V., and Kirillov, S., J. Electrochem. Sci. Eng., 2016, vol. 6, pp. 225–234. Gromadskaya, L.I., Romanova, I.V., Vyshnevskyi, O.A., and Kirillov, S.A., ISRN Inorg. Chem., 2013, vol. 2013, art. ID 969746. Anderson, M.A., Cudero, A.L., and Palma, J., Electrochim. Acta, 2010, vol. 55, pp. 3845–3856. Maletin, Y., Stryzhakova, N., Zelinskyi, S., Gromadskyi, D., and Tychyna, S., US Patent 2013/0139951, 2012.