Pd-doped h-BN monolayer: a promising gas scavenger for SF6 insulation devices
Tóm tắt
h-BN monolayer as a novel 2D nanomaterial has raised great attention for sensing application in recent years. In this work, we using DFT method investigate the Pd-doping behavior on the pristine h-BN monolayer as well as related adsorption and sensing performance upon three SF6 decomposed species to explore its sensing potential. Our results indicate that n-typing doping is identified after Pd atom is doped on the h-BN monolayer, forming a novel chemical bond of Pd–N with length of 2.16 Å. The adsorption performance of Pd–BN monolayer upon SF6 decomposed species is in order as SOF2 > SO2 > SO2F2, with Ead of 0.94, 0.83 and 0.48 eV, respectively. After gas adsorption, the bandgap of Pd–BN monolayer is remarkably changed, making it possible for use of a resistance-type gas sensor. The sensitivity is obtained as − 41.04%, − 108.14% and 2.55% for SO2, SOF2 and SO2F2 systems, respectively, which implies the superior sensing behavior upon SOF2 at room temperature. Our work is meaningful to propose a novel sensing nanomaterial for detection of SF6 decomposed species, bridging the distance to evaluate the operation status of SF6 insulation devices.
Tài liệu tham khảo
Banerjee, P., Pathak, B., Ahuja, R., Das, G.P.: First principles design of Li functionalized hydrogenated h-BN nanosheet for hydrogen storage. Int. J. Hydrog. Energy 41(32), 14437–14446 (2016)
Bhimanapati, G.R., Lin, Z., Meunier, V., Jung, Y., Cha, J., Das, S., Xiao, Di, Son, Y., Strano, M.S., Cooper, V.R.: Recent advances in two-dimensional materials beyond graphene. ACS Nano 9(12), 11509–11539 (2015)
Chang, C.W., Fennimore, A.M., Afanasiev, A., Okawa, D., Ikuno, T., Garcia, H., Li, D., Majumdar, A., Zettl, A.: Isotope effect on the thermal conductivity of boron nitride nanotubes. Phys. Rev. Lett. 97(8), 085901 (2006)
Chen, W., Zhou, Qu, Gao, T., Xiaoping, Su: Pd-doped SnO2-based sensor detecting characteristic fault hydrocarbon gases in transformer oil. J. Nanomater.ls 1, 2527–2531 (2013)
Cui, H., Zhang, X., Chen, D.: Borophene: a promising adsorbent material with strong ability and capacity for SO2 adsorption. Appl. Phys. A 124(9), 636 (2018)
Cui, H., Zhang, G., Zhang, X., Tang, J.: Rh-doped MoSe2 as toxic gas scavenger: a first-principles study. Nanoscale Adv. 1, 772–780 (2019a)
Cui, H., Zhang, G., Zhang, X., Tang, J.: Pd-doped MoS2 monolayer: a promising candidate for DGA in transformer oil based on DFT method. Appl. Surf. Sci. 470, 1035–1042 (2019b)
Cui, H., Liu, T., Zhang, Y., Zhang, X.: Ru-InN monolayer as a gas scavenger to guard the operation status of SF6 insulation devices: a first-principles theory. IEEE Sens. J. 19(13), 5249–5255 (2019c)
Cui, H., Chen, D., Zhang, Y., Zhang, X.: Dissolved gas analysis in transformer oil using Pd catalyst decorated MoSe2 monolayer: a first-principles theory. Sustain. Mater. Technol. 20, e00094 (2019d)
Cui, H., Chen, D., Yan, C., Zhang, Y., Zhang, X.: Repairing the N-vacancy in an InN monolayer using NO molecules: a first-principles study. Nanoscale Adv. 1(5), 2003–2008 (2019e)
Cui, H., Zhang, X., Chen, D., Tang, J.: Pt & Pd decorated CNT as a workable media for SOF2 sensing: a DFT study. Appl. Surf. Sci. 471, 335–341 (2019f)
Cui, H., Zhang, X., Li, Yi, Chen, D., Zhang, Y.: First-principles insight into Ni-doped InN monolayer as a noxious gases scavenger. Appl. Surf. Sci. 494, 859–866 (2019g)
Cui, H., Yan, C., Jia, P., Cao, W.: Adsorption and sensing behaviors of SF6 decomposed species on Ni-doped C3N monolayer: a first-principles study. Appl. Surf. Sci. 512, 145759 (2020a)
Cui, H., Jia, P., Peng, X.: Adsorption of SO2 and NO2 molecule on intrinsic and Pd-doped HfSe2 monolayer: a first-principles study. Appl. Surf. Sci. 513, 145863 (2020b)
Das, N.K., Shoji, T.: A density functional study of atomic oxygen and water molecule adsorption on Ni(111) and chromium-substituted Ni(111) surfaces. Appl. Surf. Sci. 258(1), 442–447 (2011)
Delley, B.: From molecules to solids with the DMol3 approach. J. Chem. Phys. 113(18), 7756–7764 (2000)
Gao, M., A Lyalin, T Taketsugu. CO oxidation on h-BN supported Au atom[J]. Journal of Chemical Physics, 2013, 138 (3): 405–1.
Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006)
Gui, Y., Li, W., He, X., Ding, Z., Tang, C., Lingna, Xu: Adsorption properties of pristine and Co-doped TiO2 (1 0 1) toward dissolved gas analysis in transformer oil. Appl. Surf. Sci. 507, 145163 (2020)
Guo, Y., Chen, Z., Wangxi, Wu, Liu, Y., Zhou, Z.: Adsorption of NOx (x = 1, 2) gas molecule on pristine and B atom embedded γ-graphyne based on first-principles study. Appl. Surf. Sci. 455, 484–491 (2018a)
Guo, Y., Zhang, Y., Wangxi, Wu, Liu, Y., Zhou, Z.: Transition metal (Pd, Pt, Ag, Au) decorated InN monolayer and their adsorption properties towards NO2: density functional theory study. Appl. Surf. Sci. 455, 106–114 (2018b)
Hao, C., Xiaoxing, Z., Jun, Z., Ying, Z. 2019. Nanomaterials-based gas sensors of SF6 decomposed species for evaluating the operation status of high-voltage insulation devices: a review. In High Voltage: Institution of Engineering and Technology
He, X., Gui, Y., Xie, J., Liu, X., Wang, Q., Tang, C.: A DFT study of dissolved gas (C2H2, H2, CH4) detection in oil on CuO-modified BNNT. Appl. Surf. Sci. 500, 144030 (2020)
Hou, C., Li, J., Huo, D., Luo, X., Dong, J., Yang, M., Shi, X.: A portable embedded toxic gas detection device based on a cross-responsive sensor array. Sens. Actuators B 161(1), 244–250 (2012)
Ju, W., Li, T., Su, X., Li, H., Li, X., Ma, D.: Au cluster adsorption on perfect and defective MoS2 monolayers: structural and electronic properties. Phys. Chem. Chem. Phys. 19, 20735 (2017)
Kuang, A., Zhou, T., Wang, G., Li, Y., Gang, Wu, Yuan, H., Chen, H., Yang, X.: Dehydrogenation of ammonia borane catalyzed by pristine and defective h-BN sheets. Appl. Surf. Sci. 362, 562–571 (2016)
Liu, D., Gui, Y., Ji, C., Tang, C., Zhou, Q., Li, J., Zhang, X.: Adsorption of SF6 decomposition components over Pd (1 1 1): a density functional theory study. Appl. Surf. Sci. 465, 172–179 (2019)
Ma, Y., Dai, Y., Guo, M., Niu, C., Lu, J., Huang, B.: Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys. Chem. Chem. Phys. 13(34), 15546 (2011)
Ma, D., Wang, Q., Li, T., He, C., Ma, B., Tang, Y., Zhansheng, Lu, Yang, Z.: Repairing sulfur vacancies in the MoS2 monolayer by using CO, NO and NO2 molecules. J. Mater. Chem. C 4(29), 7093–7101 (2016)
Ma, D., Zhang, J., Tang, Y., Fu, Z., Yang, Z., Lu, Z.: Repairing single and double atomic vacancies in a C3N monolayer with CO or NO molecules: a first-principles study. Phys. Chem. Chem. Phys. 20(19), 13517 (2018)
Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976)
Neek-Amal, M., Beheshtian, J., Sadeghi, A., Michel, K.H., Peeters, F.M.: Boron nitride monolayer: a strain-tunable nanosenso. J. Phys. Chem. C 117(25), 13261–13267 (2013)
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451 (2005)
Pakdel, A., Zhi, C., Bando, Y., Nakayama, T., Golberg, D.: Boron nitride nanosheet coatings with controllable water repellency. ACS Nano 5(8), 6507–6515 (2011)
Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)
Qi, L., Wang, Y., Shen, L., Wu, Y.: Chemisorption-induced n-doping of MoS2 by oxygen. Appl. Phys. Lett. 108(6), 3768 (2016)
Shinkai, H., Goshima, H., Yashima, M.: A study on condition assessment method of gas-insulated switchgear. Part II. Influence of moisture in the SF6, detection of a partial discharge on a spacer, repetition discharge and overheating by incomplete contact. Electr. Eng. Jpn 176(2), 22–30 (2011)
Taherpour, A.A., Rezaei, O., Shahri, Z., Jalilian, J., Jamshidi, M., Zolfaghar, N.: First principles studies of electronic and optical properties of helium adsorption on Sc-doped BN monolayer. J. Iran. Chem. Soc. 12(11), 1983–1990 (2015)
Verlag, S.: Semiconductor physical electronics. Semicond. Phys.l Electron. 28(3), 363–364 (2006)
Vilé, G., Albani, D., Nachtegaal, M., Chen, Z., Dontsova, D., Antonietti, M., López, N., Pérez-Ramírez, J.: A stable single-site palladium catalyst for hydrogenations. Angew. Chem. Int. Ed. 54(38), 11265–11269 (2015)
Wang, X., Zhi, C., Li, L., Zeng, H., Li, C., Mitome, M., Golberg, D., Bando, Y.: “Chemical blowing” of thin-walled bubbles: high-throughput fabrication of large-area, few-layered BN and Cx-BN nanosheets. Adv. Mater. 23(35), 4072–4076 (2011)
Wang, Y., Gui, Y., Ji, C., Chao Tang, Qu, Zhou, J.L., Zhang, X.: Adsorption of SF6 decomposition components on Pt3-TiO2 (1 0 1) surface: a DFT study. Appl. Surf. Sci. 459, 242–248 (2018)
Yang, A.D., Wang, D.W., Wang, X.H., Chu, J.F., Lv, P.L., Liu, Y., Rong, M.Z.: Phosphorene: a promising candidate for highly sensitive and selective SF6 decomposition gas sensors. IEEE Electron. Device Lett. 38(7), 963–966 (2017)
Yuan, T., Ruan, J., Peng, C., Sun, H., Pang, Y., Yang, J., Ma, Z.-F., Zheng, S.: 3D red phosphorus/sheared CNT sponge for high performance lithium-ion battery anodes. Energy Storage Mater. 13, 267–273 (2018)
Zhang, X., Gui, Y., Dai, Z.: A simulation of Pd-doped SWCNTs used to detect SF6 decomposition components under partial discharge. Appl. Surf. Sci. 315(10), 196–202 (2014)
Zhang, X., Yu, L., Wu, X., Hu, W.: Experimental sensing and density functional theory study of H2S and SO2 adsorption on Au-modified graphene. Adv. Sci. 2, 1500101 (2015)
Zhang, X., Hou, L., Ciesielski, A., Samorì, P.: 2D materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater. 6, 1600671 (2016)
Zhou, M., Lu, Y.H., Cai, Y.Q., Zhang, C., Feng, Y.P.: Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors. Nanotechnology 22(38), 385502 (2011)
Zhou, X., Chu, W., Zhou, Y., Sun, W., Xue, Y.: DFT simulation on H2 adsorption over Ni-decorated defective h-BN nanosheets. Appl. Surf. Sci. 439, 246–253 (2018)