Pc5/Pi3 Geomagnetic Pulsations and Geomagneticslly Induced Currents

Allerton Press - Tập 85 - Trang 329-333 - 2021
Ya. A. Sakharov1, N. V. Yagova2,3, V. A. Pilipenko2,3
1Polar Geophysical Institute, Apatity, Russia
2Shmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
3Geophysical Center, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

An analysis is performed of the effect geomagnetic pulsations with frequencies of several millihertz (the Pi3/Pc5 range) have on the magnitude of geomagnetically induced currents (GICs) in the Severnyi Tranzit Electric Power Transmission Line (EPL) located at auroral latitudes. It is shown the characteristics of GICs depend not only on the amplitude of geomagnetic pulsations, but on their polarization, frequency, and spatial scale as well. The correlation between GICs and large-scale geomagnetic disturbances is higher than between GICs and small-scale disturbances. An integral (frequency-averaged) parameter is proposed that determines the correlation between the spectral power of GICs and geomagnetic pulsations. The parameter is tested on a quasi-meridional EPL.

Tài liệu tham khảo

Boteler, D.H., Pirjola, R.J., and Nevanlinna, H., Adv. Space Res., 1998, vol. 22, p. 17. Pulkkinen, A., Pirjola, R., and Viljanen, A., Space Weather, 2008, vol. 6, S07001. Forbes, K.F. and St. Cyr, O.C., Space Weather, 2004, vol. 2, S10003. Selivanov, V.N., Sakharov, Ya.A., and Efimov, B.V., Tr. Kol’sk. Nauchnn. Tsentra Ross. Akad. Nauk, Ser. Energ., 2016, no. 5, p. 96. Molinski, T.S., J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, p. 1765. Gusev, Yu.P., Lkhamdondog, A., Monakov, Yu.V., and Yagova, N.V., Elektrichestvo, 2019, no. 9, p. 16. Dimmock, A.P., Rosenqvist, L., Hall, J.-O., et al., Space Weather, 2016, vol. 17, p. 989. Marshall, R.A., Kelly, A., Van Der Walt, T., et al., Space Weather, 2017, vol. 15, p. 895. Belakhovsky, V., Pilipenko, V., Engebretson, M., et al., J. Space Weather Space Clim., 2019, vol. 9, 18. Apatenkov, S.V., Pilipenko, V.A., Gordeev, E.I., et al., Geophys. Rev. Lett., 2020, vol. 47, e2019GL086677. Tanskanen, E.I., J. Geophys. Res.: Space Phys., 2009, vol. 114, A05204. Sakharov, Ya.A., Kat’kalov, Yu.V., Selivanov, V.N., and Viljanen, A., in Prakticheskie aspekty geliogeofiziki, Mater. 11-oi konf. “Fizika plazmy v solnechnoi sisteme” (Practical Aspects of Heliogeophysics, Proc. 11th Conf. “Plasma Physics in the Solar System”), Moscow, 2016, p. 134. Barannik, M.B., Danilin, A.N., Kolobov, V.V., et al., Instr. Exp. Tech., 2012, vol. 55, no. 1, p. 110. Yagova, N., Heilig, B., and Fedorov, E., Ann. Geophys., 2015, vol. 33, p. 117. Kay, S.M., Modern Spectral Estimation: Theory and Application, Englewood Cliffs, NJ: Prentice Hall, 1988. Baker, G., Donovan, E.F., and Jackel, B.J., J. Geophys. Res.: Space Phys., 2003, vol. 108, p. 1384. Berdichevskii, M.N., Prikl. Geofiz., 1960, no. 28, p. 70. Landau, L.D. and Lifshits, E.M., Elektrodinamika sploshnykh sred (Continuum Electrodynamics), Moscow: Nauka, 1982. Belakhovsky, V.B., Sakharov, Y.A., Pilipenko, V.A., and Selivanov, V.N., Izv., Phys. Sol. Earth, 2018, vol. 54, no. 1, p. 52. Kozyreva, O., Pilipenko, V., Sokolova, E., et al., Geomagnetic and telluric field variability as a driver of geomagnetically induced currents, in Problems of Geocosmos—2018, Springer 2020. Love, J.J., Coisson, P., and Pulkkinen, A., Geophys. Rev. Lett., 2016, vol. 43, p. 4126.