Pavlovian Fear Conditioning Regulates Thr286Autophosphorylation of Ca2+/Calmodulin-Dependent Protein Kinase II at Lateral Amygdala Synapses

Journal of Neuroscience - Tập 24 Số 13 - Trang 3281-3288 - 2004
Sarina M. Rodrigues1, Claudia R. Farb2, Elizabeth P. Bauer2, Joseph E. LeDoux3, Glenn E. Schafe4
1W.M. Keck Foundation, Laboratory of Neurobiology, Center for Neural Science, New York University, New York, New York 10003, USA
2New York University
3Neural Science
4Yale University

Tóm tắt

Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role in synaptic plasticity and memory formation in a variety of learning systems and species. The present experiments examined the role of CaMKII in the circuitry underlying pavlovian fear conditioning. First, we reveal by immunocytochemical and tract-tracing methods that αCaMKII is postsynaptic to auditory thalamic inputs and colocalized with the NR2B subunit of the NMDA receptor. Furthermore, we show that fear conditioning results in an increase of the autophosphorylated (active) form of αCaMKII in lateral amygdala (LA) spines. Next, we demonstrate that intra-amygdala infusion of a CaMK inhibitor, 1-[NO-bis-1,5-isoquinolinesulfonyl]-N-methyl-l-tyrosyl-4-phenylpiperazine, KN-62, dose-dependently impairs the acquisition, but not the expression, of auditory and contextual fear conditioning. Finally, in electrophysiological experiments, we demonstrate that an NMDA receptor-dependent form of long-term potentiation at thalamic input synapses to the LA is impaired by bath application of KN-62in vitro. Together, the results of these experiments provide the first comprehensive view of the role of CaMKII in the amygdala during fear conditioning.

Từ khóa


Tài liệu tham khảo

10.1126/science.276.5321.2042

2002, J Neurosci, 22, 5239, 10.1523/JNEUROSCI.22-12-05239.2002

10.1038/35081080

10.1073/pnas.84.7.1794

1983, J Biol Chem, 258, 12735, 10.1016/S0021-9258(17)44239-6

2001, J Neurosci, 21, 27, 10.1523/JNEUROSCI.21-01-00027.2001

10.1073/pnas.93.15.8040

10.1016/S0896-6273(00)80774-6

10.1073/pnas.96.6.3269

10.1016/S0896-6273(02)01007-3

1985, J Neurosci, 5, 3270, 10.1523/JNEUROSCI.05-12-03270.1985

10.1002/(SICI)1098-2396(199710)27:2<106::AID-SYN2>3.0.CO;2-I

10.1016/S0959-4388(02)00327-6

10.1038/35077089

10.1016/S0168-0102(00)00139-5

10.1126/science.279.5352.870

2001, J Neurosci, 21, 7053, 10.1523/JNEUROSCI.21-18-07053.2001

10.1126/science.3037704

1996, Adv Pharmacol, 36, 193, 10.1016/S1054-3589(08)60583-9

10.1042/BJ20020228

10.1016/0304-3940(91)90663-E

10.1016/S0092-8674(01)00497-4

1991, Exp Brain Res, 85, 577

10.1073/pnas.96.6.3239

10.1073/pnas.84.16.5962

10.1038/nrn753

10.1016/S0166-2236(99)01465-4

2002, Biochim Biophys Acta, 1598, 40, 10.1016/S0167-4838(02)00315-1

10.1126/science.274.5293.1678

10.1002/cne.10204

10.1016/S0896-6273(02)00978-9

1985, J Biol Chem, 260, 9039, 10.1016/S0021-9258(17)39454-1

10.1074/jbc.271.49.31670

10.1177/43.3.7532656

10.1037/0735-7044.106.2.274

10.1038/89512

2001, J Neurosci, 21, 6889, 10.1523/JNEUROSCI.21-17-06889.2001

2002, J Neurosci, 22, 5219, 10.1523/JNEUROSCI.22-12-05219.2002

2000, J Neurosci, 20, 8177, 10.1523/JNEUROSCI.20-21-08177.2000

10.1016/S0166-2236(00)01969-X

10.1126/science.284.5411.162

10.1038/78783

10.1126/science.1378648

10.1126/science.1321493

10.1074/jbc.R000013200

1996, J Neurophysiol, 76, 2097, 10.1152/jn.1996.76.3.2097

10.1074/jbc.273.33.20689

10.1074/jbc.272.21.13467

10.1074/jbc.M001471200

10.1016/0006-8993(95)01411-X

10.1016/S0896-6273(02)01049-8

1989, J Biol Chem, 264, 17907, 10.1016/S0021-9258(19)84658-6

1988, J Biol Chem, 263, 16082, 10.1016/S0021-9258(18)37561-6

10.1038/nn855

1999, J Neurosci, 19, 10512, 10.1523/JNEUROSCI.19-23-10512.1999

10.1016/0024-3205(91)90537-L