Pauling's rules for oxide surfaces

Surface Science Reports - Tập 73 - Trang 213-232 - 2018
Tassie K. Andersen1, Dillon D. Fong2, Laurence D. Marks1
1Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, United States
2Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States

Tài liệu tham khảo

Ohtomo, 2004, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature, 427, 423, 10.1038/nature02308 Tsui, 2004, Field-induced resistive switching in metal-oxide interfaces, Appl. Phys. Lett., 85, 317, 10.1063/1.1768305 Mannhart, 2010, Oxide interfaces- an opportunity for electronics, Science, 327, 1607, 10.1126/science.1181862 Suntivich, 2011, Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries, Nat. Chem., 3, 546, 10.1038/nchem.1069 Lin, 2013, Synthesis-dependent atomic surface structures of oxide nanoparticles, Phys. Rev. Lett., 111, 156101, 10.1103/PhysRevLett.111.156101 Feng, 2016, Catalytic activity and stability of oxides: the role of near-surface atomic structures and compositions, Acc. Chem. Res., 49, 966, 10.1021/acs.accounts.5b00555 Mefford, 2016, Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts, Nat. Commun., 7, 11053, 10.1038/ncomms11053 O'Sullivan, 2016, Interface control by chemical and dimensional matching in an oxide heterostructure, Nat. Chem., 8, 347, 10.1038/nchem.2441 Chiaramonti, 2008, Time, temperature, and oxygen partial pressure-dependent surface reconstructions on SrTiO3 (111): a systematic study of oxygen-rich conditions, Surf. Sci., 602, 3018, 10.1016/j.susc.2008.07.033 Russell, 2008, Surface of sputtered and annealed polar SrTiO3 (111): TiOx-Rich (n × n) reconstructions, J. Phys. Chem. C, 112, 6538, 10.1021/jp711239t Marks, 2015, Transition from order to configurational disorder for surface reconstructions on SrTiO3 (111), Phys. Rev. Lett., 114, 226101, 10.1103/PhysRevLett.114.226101 Hamers, 1986, Surface electronic structure of Si (111)-(7× 7) resolved in real space, Phys. Rev. Lett., 56, 1972, 10.1103/PhysRevLett.56.1972 Brommer, 1992, Ab initio theory of the Si (111)-(7× 7) surface reconstruction: a challenge for massively parallel computation, Phys. Rev. Lett., 68, 1355, 10.1103/PhysRevLett.68.1355 Giessibl, 1995, Atomic resolution of the silicon (111)-(7x7) surface by atomic force microscopy, Science, 267, 68, 10.1126/science.267.5194.68 Erdman, 2002, The structure and chemistry of the TiO2-rich surface of SrTiO3 (001), Nature, 419, 55, 10.1038/nature01010 Gerhold, 2014, Stoichiometry-driven switching between surface reconstructions on SrTiO3 (001), Surf. Sci., 621, L1, 10.1016/j.susc.2013.10.015 Hu, 2014, The role of oleic acid: from synthesis to assembly of perovskite nanocuboid two-dimensional arrays, Inorg. Chem., 54, 740, 10.1021/ic5011715 Jalan, 2009, Growth of high-quality SrTiO3 films using a hybrid molecular beam epitaxy approach, J. Vac. Sci. Technol., A, 27, 461, 10.1116/1.3106610 Kajdos, 2014, Surface reconstructions in molecular beam epitaxy of SrTiO3, Appl. Phys. Lett., 105, 191901, 10.1063/1.4901726 Kienzle, 2011, Vacant-site octahedral tilings on SrTiO3 (001), the (√13 × √13)R33.7° surface, and related structures, Phys. Rev. Lett., 106, 176102, 10.1103/PhysRevLett.106.176102 Silly, 2006, SrTiO3 (0 0 1) reconstructions: the (2 × 2) to c (4 × 4) transition, Surf. Sci., 600, 219, 10.1016/j.susc.2006.05.043 He, 2010, Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry, Phys. Rev. Lett., 105, 227203, 10.1103/PhysRevLett.105.227203 Aso, 2013, Atomic level observation of octahedral distortions at the perovskite oxide heterointerface, Sci. Rep., 3, 2214, 10.1038/srep02214 Sánchez, 2014, Tailored surfaces of perovskite oxide substrates for conducted growth of thin films, Chem. Soc. Rev., 43, 2272, 10.1039/C3CS60434A Schlom, 2014, Elastic strain engineering of ferroic oxides, MRS Bull., 39, 118, 10.1557/mrs.2014.1 Corso, 2004, Boron nitride nanomesh, Science, 303, 217, 10.1126/science.1091979 Silly, 2005, Selecting the shape of supported metal nanocrystals: Pd huts, hexagons, or pyramids on SrTiO3(001), Phys. Rev. Lett., 94, 10.1103/PhysRevLett.94.046103 Silly, 2005, Growth of Ag icosahedral nanocrystals on a SrTiO3(001) support, Appl. Phys. Lett., 87, 213107, 10.1063/1.2133909 Silly, 2005, Fe nanocrystal growth on SrTiO3(001), Appl. Phys. Lett., 87 Silly, 2005, Self-assembled supported Co nanocrystals: the adhesion energy of face-centered-cubic Co on SrTiO3(001)-(2x2), Appl. Phys. Lett., 87, 10.1063/1.2005390 Schmid, 2007, Nanotemplate with holes: ultrathin alumina on Ni3Al(111), Phys. Rev. Lett., 99, 196104, 10.1103/PhysRevLett.99.196104 Ait-Mansour, 2008, Fabrication of a well-ordered nanohole array stable at room temperature, Nano Lett., 8, 2035, 10.1021/nl8013378 Becker, 2009, Surfaces: two-dimensional templates, vol. III, 45 Zhang, 2011, Guided growth of Ag nanoparticles on SrTiO3 (110) surface, J. Chem. Phys., 135, 144702, 10.1063/1.3648052 Mavroides, 1976, Photoelectrolysis of water in cells with SrTiO3 anodes, Appl. Phys. Lett., 28, 241, 10.1063/1.88723 Cappus, 1995, Polar surfaces of oxides -- Reactivity and reconstruction, Surf. Sci., 337, 268, 10.1016/0039-6028(95)00624-9 Diebold, 2003, The surface science of titanium dioxide, Surf. Sci. Rep., 48, 53, 10.1016/S0167-5729(02)00100-0 Centi, 2008, Catalysis by layered materials: a review, Microporous Mesoporous Mater., 107, 3, 10.1016/j.micromeso.2007.03.011 Townsend, 2012, Nanoscale strontium titanate photocatalysts for overall water splitting, ACS Nano, 6, 7420, 10.1021/nn302647u Wang, 2013, Role of point defects on the reactivity of reconstructed anatase titanium dioxide (001) surface, Nat. Commun., 4, 2214, 10.1038/ncomms3214 Reyren, 2007, Superconducting interfaces between insulating oxides, Science, 317, 1196, 10.1126/science.1146006 Gariglio, 2011, Oxide interface superconductivity, Compt. Rendus Phys., 12, 591, 10.1016/j.crhy.2011.03.006 Hwang, 2012, Emergent phenomena at oxide interfaces, Nat. Mater., 11, 103, 10.1038/nmat3223 Ingle, 2010, The structural analysis possibilities of reflection high energy electron diffraction, J. Phys. D Appl. Phys., 43, 133001, 10.1088/0022-3727/43/13/133001 Soares, 2011, Advances on surface structural determination by LEED, J. Phys. Condens. Matter, 23, 303001, 10.1088/0953-8984/23/30/303001 Onishi, 1994, Reconstruction of TiO2 (110) surface: STM study with atomic-scale resolution, Surf. Sci., 313, L783, 10.1016/0039-6028(94)91146-0 Castell, 2002, Scanning tunneling microscopy of reconstructions on the SrTiO3(001) surface, Surf. Sci., 505, 1, 10.1016/S0039-6028(02)01393-6 Russell, 2008, Reconstructions on the polar SrTiO3 (110) surface: analysis using STM, LEED, and AES, Phys. Rev. B Condens. Matter, 77, 245414, 10.1103/PhysRevB.77.245414 Tersoff, 1985, Theory of the scanning tunneling microscope, Phys. Rev. B Condens. Matter, 31, 805, 10.1103/PhysRevB.31.805 Becerra-Toledo, 2012, c(4 × 2) and related structural units on the SrTiO3 (001) surface: scanning tunneling microscopy, density functional theory, and atomic structure, J. Chem. Phys., 136, 214701, 10.1063/1.4719212 Kienzle, 2012, Surface transmission electron diffraction for SrTiO3 surfaces, CrystEngComm, 14, 7833, 10.1039/c2ce25204j Robinson, 1992, Surface X-Ray diffraction, Rep. Prog. Phys., 55, 599, 10.1088/0034-4885/55/5/002 Herger, 2007, Surface structure of SrTiO3 (001), Phys. Rev. B Condens. Matter, 76, 195435, 10.1103/PhysRevB.76.195435 Woolfson, 1995 Marks, 1999, A feasible set approach to the crystallographic phase problem, Acta Crystallogr. Sect. A, 55, 601, 10.1107/S0108767398014408 Megaw, 1946, Crystal structure of double oxides of the perovskite type, Proc. Phys. Soc., 58, 133, 10.1088/0959-5309/58/2/301 Cord, 1985, Electronic study of SrTiO3 (001) surfaces by photoemission, Surf. Sci., 162, 10.1016/0039-6028(85)90872-6 Andersen, 1990, Impurity-induced 900° C (2 × 2) surface reconstruction of SrTiO3 (100), Appl. Phys. Lett., 56, 1847, 10.1063/1.103223 Naito, 1994, Reflection high-energy electron diffraction study on the SrTiO3 surface structure, Physica C, 229, 1, 10.1016/0921-4534(94)90805-2 Tanaka, 1994, Interaction of oxygen vacancies with O2 on a reduced SrTiO3 (100) √5 × √5-R26.6° surface observed by STM, Surf. Sci., 318, 29, 10.1016/0039-6028(94)90338-7 Bando, 1995, Structure and electronic states on reduced SrTiO3(110) surface observed by scanning-tunneling-microscopy and spectroscopy, J. Vac. Sci. Technol. B, 13, 1150, 10.1116/1.588227 Jiang, 1995, SrTiO3 (001) surfaces and growth of ultra-thin GdBa2Cu3O7-x films studied by LEED/AES and UHV-STM, Surf. Sci., 338, L882, 10.1016/0039-6028(95)00643-5 Brunen, 1997, Investigation of the SrTiO3 (110) surface by means of LEED, scanning tunneling microscopy and Auger spectroscopy, Surf. Sci., 389, 349, 10.1016/S0039-6028(97)00450-0 Haruyama, 1998, Annealing temperature dependence on the electronic structure of the reduced SrTiO3 (111) surface, J. Electron. Spectrosc. Relat. Phenom., 88, 695, 10.1016/S0368-2048(97)00201-6 Sekiguchi, 1998, Atomic force microscopic observation of SrTiO3 polar surface, Solid State Ionics, 108, 73, 10.1016/S0167-2738(98)00021-6 Jiang, 1999, c(6 × 2) and c(4 × 2) reconstruction of SrTiO3 (001), Surf. Sci., 425, 343, 10.1016/S0039-6028(99)00223-X Møller, 1999, Selective growth of a MgO (100)-c(2 × 2) superstructure on a SrTiO3 (100)-(2 × 2) substrate, Surf. Sci., 425, 15, 10.1016/S0039-6028(99)00018-7 Martin-Gonzalez, 2000, In situ reduction of (100) SrTiO3, Solid State Sci., 2, 519, 10.1016/S1293-2558(00)01068-2 Kubo, 2001, Surface structure of SrTiO3 (100)-(√5 × √5)R26.6°, Phys. Rev. Lett., 86, 1801, 10.1103/PhysRevLett.86.1801 Castell, 2002, Nanostructures on the SrTiO3(001) surface studied by STM, Surf. Sci., 516, 33, 10.1016/S0039-6028(02)02053-8 Erdman, 2003, Surface structures of SrTiO3 (001): a TiO2-rich reconstruction with a c(4 × 2) unit cell, J. Am. Chem. Soc., 125, 10050, 10.1021/ja034933h Kubo, 2003, Surface structure of SrTiO3 (100), Surf. Sci., 542, 177, 10.1016/S0039-6028(03)00998-1 Gomann, 2005, Electronic structure and topography of annealed SrTiO3 (111) surfaces studied with MIES and STM, Appl. Surf. Sci., 252, 196, 10.1016/j.apsusc.2005.01.116 Lanier, 2007, Atomic-scale structure of the SrTiO3 (001)-c(6 × 2) reconstruction: experiments and first-principles calculations, Phys. Rev. B Condens. Matter, 76, 10.1103/PhysRevB.76.045421 Russell, 2007, (√13 × √13)R13.9° and (√7 × √7)R19.1° reconstructions of the polar SrTiO3 (111) surface, Phys. Rev. B Condens. Matter, 75, 155433, 10.1103/PhysRevB.75.155433 Marks, 2009, The small unit cell reconstructions of SrTiO3 (111), Surf. Sci., 603, 2179, 10.1016/j.susc.2009.04.016 Enterkin, 2010, A homologous series of structures on the surface of SrTiO3 (110), Nat. Mater., 9, 245, 10.1038/nmat2636 Li, 2011, Reversible transition between thermodynamically stable phases with low density of oxygen vacancies on the SrTiO3 (110) surface, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.036103 Lin, 2011, The (2 × 2) reconstructions on the SrTiO3 (001) surface: a combined scanning tunneling microscopy and density functional theory study, Surf. Sci., 605, L51, 10.1016/j.susc.2011.06.001 Ciston, 2015, Surface determination through atomically resolved secondary-electron imaging, Nat. Commun., 6, 7358, 10.1038/ncomms8358 Wang, 2016, Transition from reconstruction toward thin film on the (110) surface of strontium titanate, Nano Lett., 16, 2407, 10.1021/acs.nanolett.5b05211 Andersen, 2018, Single-layer TiOx reconstructions on SrTiO3 (111):(√ 7×√ 7) R19. 1°,(√ 13×√ 13) R13. 9°, and related structures, Surf. Sci., 675, 36, 10.1016/j.susc.2018.04.011 Kolpak, 2008, Evolution of the structure and thermodynamic stability of the BaTiO3 (001) surface, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.036102 Martirez, 2012, Atomic and electronic structure of the BaTiO3 (001) (√5 × √5)R26.6° surface reconstruction, Phys. Rev. Lett., 109, 256802, 10.1103/PhysRevLett.109.256802 Meyerheim, 2012, BaTiO3 (001)-(2 × 1): surface structure and spin density, Phys. Rev. Lett., 108, 215502, 10.1103/PhysRevLett.108.215502 Morales, 2013, On the relationship between surface reconstructions and step edge stability on BaTiO 3 (001), Surf. Sci., 609, 62, 10.1016/j.susc.2012.11.006 Morales, 2014, Coexisting surface phases and coherent one-dimensional interfaces on BaTiO3 (001), ACS Nano, 8, 4465, 10.1021/nn501759g Kienzle, 2015, Lanthanum aluminate (110) 3 × 1 surface reconstruction, Surf. Sci., 633, 60, 10.1016/j.susc.2014.11.016 Sanna, 2013, Charge compensation by long-period reconstruction in strongly polar lithium niobate surfaces, Phys. Rev. B Condens. Matter, 88, 115422, 10.1103/PhysRevB.88.115422 Munkholm, 2001, Antiferrodistortive reconstruction of the PbTiO3 (001) surface, Phys. Rev. Lett., 88, 10.1103/PhysRevLett.88.016101 Pashley, 1989, Electron counting model and its application to island structures on molecular-beam epitaxy grown GaAs (001) and ZnSe (001), Phys. Rev. B Condens. Matter, 40, 10481, 10.1103/PhysRevB.40.10481 Wolf, 1992, Reconstruction of NaCl surfaces from a dipolar solution to the Madelung problem, Phys. Rev. Lett., 68, 3315, 10.1103/PhysRevLett.68.3315 Noguera, 2000, Polar oxide surfaces, J. Phys. Condens. Matter, 12, R367, 10.1088/0953-8984/12/31/201 Goniakowski, 2008, Polarity of oxide surfaces and nanostructures, Rep. Prog. Phys., 71, 10.1088/0034-4885/71/1/016501 Wang, 1995, Studies of LaAlO3 (100) surfaces using RHEED and REM. II: √5 × √5 surface reconstruction, Surf. Sci., 328, 159, 10.1016/0039-6028(95)00015-1 Becerra-Toledo, 2012, Water adsorption on SrTiO3(001): II. Water, water, everywhere, Surf. Sci., 606, 791, 10.1016/j.susc.2012.01.010 Becerra-Toledo, 2012, Water adsorption on SrTiO3(001): I. Experimental and simulated STM, Surf. Sci., 606, 762, 10.1016/j.susc.2012.01.008 Novák, 2006, Exact exchange for correlated electrons, Phys. Status Solidi B, 243, 563, 10.1002/pssb.200541371 Warschkow, 2004, TiO2-rich reconstructions of SrTiO3 (001): a theoretical study of structural patterns, Surf. Sci., 573, 446, 10.1016/j.susc.2004.10.012 Enterkin, 2012, A chemical approach to understanding oxide surfaces, Surf. Sci., 606, 344, 10.1016/j.susc.2011.10.018 Zachariasen, 1932, The atomic arrangement in glass, J. Am. Chem. Soc., 54, 3841, 10.1021/ja01349a006 Pauling, 1929, The principles determining the structure of complex ionic crystals, J. Am. Chem. Soc., 51, 1010, 10.1021/ja01379a006 Brown, 1985, Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database, Acta Crystallogr. Sect. B, 41, 244, 10.1107/S0108768185002063 Brown, 2002 Brown, 2009, Recent developments in the methods and applications of the bond valence model, Chem. Rev., 109, 6858, 10.1021/cr900053k Enterkin, 2012, A chemical approach to understanding oxide surfaces, Surf. Sci., 606, 344, 10.1016/j.susc.2011.10.018 Shannon, 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A, 32, 751, 10.1107/S0567739476001551 Binder, 1981, Square lattice gases with 2-body and 3-body interactions - a model for the adsorption of hydrogen on Pd(100), Surf. Sci., 108, 503, 10.1016/0039-6028(81)90562-8 Conner, 1987, Solid physically adsorbed films: a Potts lattice-gas-model study, Phys. Rev. B Condens. Matter, 36, 3683, 10.1103/PhysRevB.36.3683 Jayanthi, 1991, Surface melting in a Potts lattice-gas model, Phys. Rev. B Condens. Matter, 44, 427, 10.1103/PhysRevB.44.427 Zaluskakotur, 1992, The kinetic Potts-model in the description of surface dynamics, Surf. Sci., 265, 196, 10.1016/0039-6028(92)90500-6 Dobrovolny, 2004, Surface transitions of the semi-infinite Potts model II: the low bulk temperature regime, J. Stat. Phys., 116, 1405, 10.1023/B:JOSS.0000041744.83013.5d Dobrovolny, 2004, Surface transitions of the semi-infinite Potts model I: the high bulk temperature regime, J. Stat. Phys., 114, 1269, 10.1023/B:JOSS.0000013957.89983.81 Marshall, 2011, Surface and defect structure of oxide nanowires on SrTiO3, Phys. Rev. Lett., 107 Marshall, 2012, Structure and composition of linear TiOx nanostructures on SrTiO3 (001), Phys. Rev. B Condens. Matter, 86, 125416, 10.1103/PhysRevB.86.125416 Wang, 2012, Cation stoichiometry optimization of SrTiO3 (110) thin films with atomic precision in homogeneous molecular beam epitaxy, Appl. Phys. Lett., 100 Koirala, 2018, Al Rich (111) and (110) Surfaces of LaAlO3, Surf. Sci., 677, 99, 10.1016/j.susc.2018.05.015 Ciston, 2009, Water-driven structural evolution of the polar MgO (111) surface: an integrated experimental and theoretical approach, Phys. Rev. B Condens. Matter, 79, 10.1103/PhysRevB.79.085421 Finocchi, 2004, Stability of rocksalt (111) polar surfaces: beyond the octopole, Phys. Rev. Lett., 92, 136101, 10.1103/PhysRevLett.92.136101 Zhang, 2008, Stability of MgO (111) polar surface: effect of the environment, J. Phys. Chem. C, 112, 3327, 10.1021/jp077030+ Ciston, 2010, Why the case for clean surfaces does not hold water: structure and morphology of hydroxylated nickel oxide (111), Surf. Sci., 604, 155, 10.1016/j.susc.2009.10.033 Diebold, 2003, One step towards bridging the materials gap: surface studies of TiO2 anatase, Catal. Today, 85, 93, 10.1016/S0920-5861(03)00378-X Lazzeri, 2001, Stress-driven reconstruction of an oxide surface: the anatase TiO2 (001)−(1× 4) surface, Phys. Rev. Lett., 87, 266105, 10.1103/PhysRevLett.87.266105 Lazzeri, 2001, Structure and energetics of stoichiometric TiO2 anatase surfaces, Phys. Rev. B Condens. Matter, 63, 155409, 10.1103/PhysRevB.63.155409 Vittadini, 1998, Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces, Phys. Rev. Lett., 81, 2954, 10.1103/PhysRevLett.81.2954 Warschkow, 2008, Structure and local-equilibrium thermodynamics of the c (2× 2) reconstruction of rutile TiO2 (100), Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.086102 Kresse, 2005, Structure of the ultrathin aluminum oxide film on NiAl (110), Science, 308, 1440, 10.1126/science.1107783 Lauritsen, 2009, Atomic-Scale structure and stability of the √31 × √31R9° surface of Al2O3 (0001), Phys. Rev. Lett., 103, 10.1103/PhysRevLett.103.076103 Nishimura, 2008, Structure of an ultrathin aluminum oxide layer grown on a NiAl (110) substrate, Phys. Rev. B Condens. Matter, 77, 10.1103/PhysRevB.77.073405 Schmid, 2007, Nanotemplate with holes: ultrathin alumina on Ni3Al (111), Phys. Rev. Lett., 99, 196104, 10.1103/PhysRevLett.99.196104 Doudin, 2017, Epitaxial NiWO4 films on Ni (110): experimental and theoretical study of surface stability, Surf. Sci., 659, 20, 10.1016/j.susc.2017.02.003 Cook, 2018, Ab Initio Predictions of TiO2 Double-layer SrTiO3 (001) Surface Reconstructions, J. Phys. Chem C, 10.1021/acs.jpcc.8b07128 Capdevila-Cortada, 2017, Entropic contributions enhance polarity compensation for CeO2 (100) surfaces, Nat. Mater., 16, 328, 10.1038/nmat4804 Shimizu, 2011, Atomic-scale visualization of initial growth of homoepitaxial SrTiO3 thin film on an atomically ordered substrate, ACS Nano, 5, 7967, 10.1021/nn202477n Ohsawa, 2015, A single-atom-thick TiO2 nanomesh on an insulating oxide, ACS Nano, 9, 8766, 10.1021/acsnano.5b02867 Phark, 2011, Selective growth of perovskite oxides on SrTiO3 (001) by control of surface reconstructions, Appl. Phys. Lett., 98, 161908, 10.1063/1.3583443 Shimizu, 2014, Epitaxial growth process of La0.7Ca0.3MnO3 thin films on SrTiO3 (001): thickness-dependent inhomogeneity caused by excess Ti atoms, Cryst. Growth Des., 14, 1555, 10.1021/cg4013119 Towns, 2014, XSEDE: accelerating scientific discovery, Comput. Sci. Eng., 16, 62, 10.1109/MCSE.2014.80 Nystrom, 2015, 1 Blaha, 2018