Patterns of inflammation and the use of reversibility testing in smokers with airway complaints
Tóm tắt
Although both smoking and respiratory complaints are very common, tools to improve diagnostic accuracy are scarce in primary care. This study aimed to reveal what inflammatory patterns prevail in clinically established diagnosis groups, and what factors are associated with eosinophilia. Induced sputum and blood plasma of 59 primary care patients with COPD (n = 17), asthma (n = 11), chronic bronchitis (CB, n = 14) and smokers with no respiratory complaints ('healthy smokers', n = 17) were collected, as well as lung function, smoking history and clinical work-up. Patterns of inflammatory markers per clinical diagnosis and factors associated with eosinophilia were analyzed by multiple regression analyses, the differences expressed in odds ratios (OR) with 95% confidence intervals. Multivariately, COPD was significantly associated with raised plasma-LBP (OR 1.2 [1.04–1.37]) and sTNF-R55 in sputum (OR 1.01 [1.001–1.01]), while HS expressed significantly lowered plasma-LBP (OR 0.8 [0.72–0.95]). Asthma was characterized by higher sputum eosinophilic counts (OR 1.3 [1.05–1.54]), while CB showed a significantly higher proportion of sputum lymphocytic counts (OR 1.5 [1.12–1.9]). Sputum eosinophilia was significantly associated with reversibility after adjusting for smoking, lung function, age, gender and allergy. Patterns of inflammatory markers in a panel of blood plasma and sputum cells and mediators were discernable in clinical diagnosis groups of respiratory disease. COPD and so-called healthy smokers showed consistent opposite associations with plasma LBP, while chronic bronchitics showed relatively predominant lymphocytic inflammation compared to other diagnosis groups. Only sputum eosinophilia remained significantly associated with reversibility across the spectrum of respiratory disease in smokers with airway complaints.
Tài liệu tham khảo
Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS: Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med. 2001, 163: 1256-76.
Celli BR, MacNee W, Agusti A, Anzueto A, Berg B, Buist AS, Calverley PMA, Chavannes N, Dillard T, Fahy B, Fein A, Heffner J, Lareau S, Meek P, Martinez F, McNicholas W, Muris J, Austegard E, Pauwels R, Rennard S, Rossi A, Siafakas N, Tiep B, Vestbo J, Wouters E, ZuWallack R: Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004, 23 (6): 932-46.
Schermer TR, Jacobs JE, Chavannes NH, Hartman J, Folgering HT, Bottema BJ, Weel van C: Validity of spirometric testing in a general practice population of patients with chronic obstructive pulmonary disease (COPD). Thorax. 2003, 58: 861-86. 10.1136/thorax.58.10.861.
Chavannes N, Schermer T, Akkermans R, Jacobs J, Graaf van de, Bollen R, Schayck O van, Bottema B: Impact of spirometry on GPs diagnostic differentiation and decision-making. Resp Med. 2004, 98: 1124-1130. 10.1016/j.rmed.2004.04.004.
Kips JC, Fahy JV, Hargreave FE, Ind PW, in't Veen JC: Methods for sputum induction and analysis of induced sputum: a method for assessing airway inflammation in asthma. Eur Resp J. 1998, 11: 9S-12S.
Peleman RA, Rytila PH, Kips JC, Joos GF, Pauwels RA: The cellular composition of induced sputum in chronic obstructive pulmonary disease. Eur Resp J. 1999, 13: 839-843. 10.1034/j.1399-3003.1999.13d24.x.
Chalmers GW, Macleod KJ, Thomson L, Little SA, McSharry C, Thomson NC: Smoking and airways inflammation in patients with mild asthma. Chest. 2001, 120: 1917-1922. 10.1378/chest.120.6.1917.
Pizzichini E, Pizzichini MMM, Kidney JC, Efthimiadis A, Hussack P, Popov T, Cox G, Dolovich J, O'Byrne P, Hargreave FE: Induced sputum, bronchoalveolar lavage and blood from mild asthmatics: inflammatory cells, lymphocyte cells, lymphocyte subsets and soluble markers compared. Eur Resp J. 1998, 11: 828-834. 10.1183/09031936.98.11040828.
Pizzichini E, Pizzichini MM, Efthimiadis A, Dolovich J, Hargreave FE: Measuring airway inflammation in asthma: eosinophils and eosinophilic cationic protein in induced sputum compared with peripheral blood. J Allergy Clin Immunol. 1997, 99: 539-44. 10.1016/S0091-6749(97)70082-4.
Vernooy JH, Küçükaycan M, Jacobs JA, Chavannes NH, Buurman WA, Dentener MA, Wouters EF: Local and Systemic Inflammation in Patients with Chronic Obstructive Pulmonary Disease: Soluble Tumor Necrosis Factor Receptors Are Increased in Sputum. Am J Respir Crit Care Med. 2002, 166 (9): 1218-24. 10.1164/rccm.2202023.
Yamamoto C, Yoneda T, Yoshikawa M, Fu A, Tokuyama T, Tsukaguchi K, Narita N: Airway inflammation in COPD assessed by sputum levels of interleukin-8. Chest. 1997, 112: 505-510.
Keatings VM, Collins PD, Scott DM, Barnes PJ: Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med. 1996, 153: 530-534.
Keatings VM, Jatakanon A, Worsdell YM, Barnes PJ: Effects of inhaled and oral glucocorticoids on inflammatory indices in asthma and COPD. Am J Resp Crit Care Med. 1996, 155: 542-548.
Schols AM, Buurman WA, Staal van den Brekel AJ, Dentener MA, Wouters EF: Evidence for a relation between metabolic derangements and increased levels of inflammatory mediators in a subgroup of patients with chronic obstructive pulmonary disease. Thorax. 1996, 51: 819-24.
Chavannes NH, Schermer TRJ, Wouters EFM, Weel van, Schayck van: Treatment of COPD in general practice: the COOPT study. Eur Resp J. 1996, 348s-Suppl 33
Fabbri LM, Romagnoli M, Corbetta L, Casoni G, Busljetic K, Turato G, Ligabue G, Ciaccia A, Saetta M, Papi A: Differences in airway inflammation in patients with fixed airflow obstruction due to asthma or chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003, 167 (3): 418-24. 10.1164/rccm.200203-183OC.
Thomas RA, Green RH, Brightling CE, Birring SS, Parker D, Wardlaw AJ, Pavord ID: The influence of age on induced sputum differential cell counts in normal subjects. Chest. 2004, 126: 1811-13. 10.1378/chest.126.6.1811.
Dentener MA, Creutzberg EC, Schols AMWJ, Mantovani A, Veer van't, Buurman WA, Wouters EFM: Systemic anti-inflammatory mediators in COPD: increase in soluble interleukin 1 receptor II during treatment of exacerbation. Thorax. 2001, 56: 721-726. 10.1136/thorax.56.9.721.
Froon AH, Dentener MA, Greve JW, Ramsay G, Buurman WA: Lipopolysaccharide toxicity-regulating proteins in bacteremia. J Infect Dis. 1995, 171: 1250-1257.
Leeuwenberg JF, Dentener MA, Buurman WA: Lipopolysaccharide LPS-mediated soluble TNF receptor release and TNF receptor expression by monocytes: role of CD14, LPS binding protein, and bactericidal/permeability-increasing protein. J Immunol. 1994, 152: 5070-5076.
Leeuwenberg JF, Jeunhomme TM, Buurman WA: Slow release of soluble TNF receptors by monocytes in vitro. J Immunol. 1994, 152: 4036-4043.
Engelberts I, Stephens S, Francot GJ, van der Linden CJ, Buurman WA: Evidence for different effects of soluble TNF-receptors on various TNF measurements in human biological fluids. Lancet. 1991, 338: 515-516. 10.1016/0140-6736(91)90591-C.
Engelberts I, Moller A, Schoen GJ, van der Linden CJ, Buurman WA: Evaluation of measurement of human TNF in plasma by ELISA. Lymphokine Cytokine Res. 1991, 10: 69-76.
Bouma MG, Stad RK, van den Wildenberg FA, Buurman WA: Differential regulatory effects of adenosine on cytokine release by activated human monocytes. J Immunol. 1994, 153: 4159-4168.
Brightling CE, Monteiro W, Ward R, Parker D, Morgan MDL, Wardlaw AJ, Pavord ID: Sputum eosinophilia and short-term response to prednisolone in chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2000, 20: 1480-1485. 10.1016/S0140-6736(00)02872-5.
Vestbo J, Lange P: Can GOLD stage 0 provide information of prognostic value in chronic obstructive pulmonary disease?. Am J Respir Crit Care Med. 2002, 166: 329-332. 10.1164/rccm.2112048.
Sibel Oktem Ayik, Ozen Kacmaz Basoglu, Munevver Erdinc: Eosinophilic bronchitis as a cause of chronic cough. A systemic diagnostic evaluation. Eur Resp J. 2002, 20: 451s-10.1183/09031936.02.00273702.
Brightling CE, Ward R, Goh KL, Wardlaw AJ, Pavord ID: Eosinophilic bronchitis is an important cause of chronic cough. Am J Resp Crit Care Med. 1999, 160: 406-410.
Gibson PG, Dolovich J, Denburg J, Ramsdale EH, Hargreave FE: Chronic cough: eosinophilic bronchitis without asthma. Lancet. 1989, 1: 1346-1348. 10.1016/S0140-6736(89)92801-8.
Chanez P, Vignola AM, O'Shaugnessy T, Enander I, Li D, Jeffery PK, Bousquet J: Corticosteroid reversibility in COPD is related to features of asthma. Am J Resp Crit Care Med. 1997, 155: 1529-1534.
Pizzichini E, Pizzichini M, Gibson P, Paramewaran K, Gleich GJ, Berman L, Dolovich J, Hargreave FE: Sputum eosinophilia predicts benefit from prednisone in smokers with chronic obstructive bronchitis. Am J Resp Crit Care Med. 1998, 158: 1511-1517.
Hargreave FE, Leigh R: Induced sputum, eosinophilic bronchitis, and chronic obstructive pulmonary disease. Am J Resp Crit Care Med. 1999, 160: S53-S57.
Louis RE, Cataldo D, Buckley MG, Sele J, Henket M, Lau LC, Bartsch P, Walls AF, Djukanovic R: Evidence of mast-cell activation in a subset of patients with eosinophilic chronic obstructive pulmonary disease. Eur Resp J. 2002, 20: 325-331. 10.1183/09031936.02.00286302.
The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2466/6/11/prepub