Patterns, control and complications of diabetes from a hospital based registry established in a low income country
Tóm tắt
Diabetes registry enables practitioners to measure the characteristics and patterns of diabetes across their patient population. They also provide insight into practice patterns which can be very effective in improving care and preventing complications. The aim of this study was to assess the patterns, control levels and complications at the baseline of the patients attending clinic at the large tertiary care hospital in Karachi, Pakistan with the help of the registry. This can be used as a reference to monitor the control and also for a comparison between peer groups. This was a cross sectional study with the data obtained from diabetes registry collected with the help of pre-designed questionnaire. HbA1c was used as a central diabetes measure and other related factors and complications were assessed with it. Only 16.6% of the participants had optimal HbA1c ≤ 7.0%. 52.9% of the patients were classified as having poor control defined by HbA1c of >8%. Three fourth of the study population were obese according to Asian specific BMI cutoffs and majority had type 2 diabetes with duration of diabetes ranging from less than one to about 35 years, mean(SD) duration being 7.6 years (7.1). Overall only 4% of the patients were on combine target of HbA1c, LDL and BP. Results of multivariable logistic regression showed that the odds of having optimal glycemic control increased by 3% with every one year increase in age. In addition, having longer duration of diabetes was associated with 56% lower odds of having good glycemic control. Moreover, having higher triglyceride levels was associated with 1% lower odds of having good glycemic control. This highlights the large burden of sub optimally controlled people with diabetes in Pakistani population, a low income country with huge diabetes prevalence and ineffective primary health care system creating enormous health and economic burden.
Tài liệu tham khảo
www.diabetesatlas.org. DF Diabetes Atlas 2015(7th Edition).
Shen J, Kondal D, Rubinstein A, Irazola V, Gutierrez L, Miranda JJ, Bernabe-Ortiz A, Lazo-Porras M, Levitt N, Steyn K, et al. A multiethnic study of pre-diabetes and diabetes in LMIC. Glob Heart. 2016;11(1):61–70.
Mohan V, Seedat YK, Pradeepa R. The rising burden of diabetes and hypertension in southeast asian and african regions: need for effective strategies for prevention and control in primary health care settings. Int J Hypertens. 2013;2013:409083.
Cheema A, Adeloye D, Sidhu S, Sridhar D, Chan KY. Urbanization and prevalence of type 2 diabetes in Southern Asia: a systematic analysis. J Glob Health. 2014;4(1):010404.
Angkurawaranon C, Jiraporncharoen W, Chenthanakij B, Doyle P, Nitsch D. Urban environments and obesity in southeast Asia: a systematic review, meta-analysis and meta-regression. PLoS One. 2014;9(11):e113547.
Ma RC, Chan JC. Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States. Ann N Y Acad Sci. 2013;281:64–91.
Lear SA, Humphries KH, Kohli S, Chockalingam A, Frohlich JJ, Birmingham CL. Visceral adipose tissue accumulation differs according to ethnic background: results of the Multicultural Community Health Assessment Trial (M-CHAT). Am J Clin Nutr. 2007;86(2):353–9.
Chandalia M, Lin P, Seenivasan T, Livingston EH, Snell PG, Grundy SM, Abate N. Insulin resistance and body fat distribution in South Asian men compared to Caucasian men. PLoS One. 2007;2(8):e812.
Basit A, Hydrie MZ, Hakeem R, Ahmedani MY, Masood Q. Frequency of chronic complications of type II diabetes. J Coll Physicians Surg Pak. 2004;14(2):79–83.
Litwak L, Goh SY, Hussein Z, Malek R, Prusty V, Khamseh ME. Prevalence of diabetes complications in people with type 2 diabetes mellitus and its association with baseline characteristics in the multinational A1chieve study. Diabetol Metab Syndr. 2013;5(1):57.
Association AD. Standards of medical care in diabetes—2016. Diab Care. 2016;39 Suppl 1:S1–2.
Ko SH, Kim SR, Kim DJ, Oh SJ, Lee HJ, Shim KH, Woo MH, Kim JY, Kim NH, Kim JT, et al. clinical practice guidelines for type 2 diabetes in Korea. Diabetes Metab J. 2011;35(5):431–6.
Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, Dagogo-Jack S, DeFronzo RA, Einhorn D, Fonseca VA et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive type 2 Diabetes Management Algorithm - 2016 executive summary. Endocr Pract. 2016;22(1):84–113.
Khowaja K, Waheed H. Self-glucose monitoring and glycaemic control at a tertiary care university hospital, Karachi, Pakistan. J Pak Med Assoc. 2010;60(12):1035–38.
Siddiqui FJ, Avan BI, Mahmud S, Nanan DJ, Jabbar A, Assam PN. Uncontrolled diabetes mellitus: prevalence and risk factors among people with type 2 diabetes mellitus in an Urban District of Karachi, Pakistan. Diabetes Res Clin Pract. 2015;107(1):148–56.
Ramachandran A, Ma RC, Snehalatha C. Diabetes in Asia. Lancet. 2009;375(9712):408–18.
Pollard C, Bailey KA, Petitte T, Baus A, Swim M, Hendryx M. Electronic patient registries improve diabetes care and clinical outcomes in rural community health centers. J Rural Health. 2009;25(1):77–84.
von Hurst PR, Stonehouse W, Coad J. Vitamin D supplementation reduces insulin resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D deficient - a randomised, placebo-controlled trial. Br J Nutr. 2010;103(4):549–55.
Krul-Poel YH, Westra S, ten Boekel E, ter Wee MM, van Schoor NM, van Wijland H, Stam F, Lips PT, Simsek S. Effect of vitamin D supplementation on glycemic control in patients with type 2 diabetes (SUNNY Trial): a randomized placebo-controlled trial. Diab Care. 2015;38(8):1420–26.
Kositsawat J, Freeman VL, Gerber BS, Geraci S. Association of A1C levels with vitamin D status in U.S. adults: data from the National Health and Nutrition Examination Survey. Diab Care. 2010;33(6):1236–8.