Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mô hình và yếu tố tác động đến tỷ lệ cân bằng dinh dưỡng trong đất dưới ba loại hình sử dụng đất trong khu vực núi cao Tây Tạng, Trung Quốc
Springer Science and Business Media LLC - Trang 1-13 - 2023
Tóm tắt
Việc hiểu biết về các biến thể và các yếu tố tác động đến cân bằng sinh thái trong đất ở các hệ sinh thái núi cao là rất quan trọng cho việc quản lý và điều chỉnh hiệu quả các môi trường dễ bị tổn thương. Trong các hệ sinh thái núi cao với dữ liệu hạn chế, mối quan hệ giữa hàm lượng dinh dưỡng trong đất, đặc biệt là tỷ lệ cân bằng dinh dưỡng trong đất và các loại hình sử dụng đất, vẫn chưa rõ ràng. Nghiên cứu này nhằm mục tiêu điều tra các đặc điểm và yếu tố kiểm soát tỷ lệ cân bằng dinh dưỡng trong đất dưới các mô hình sử dụng đất khác nhau. Một transect bao gồm đất nông nghiệp (FA), đất rừng (FO) và đất cỏ (GR) đã được thiết lập ở phía đông nam khu tự trị Tây Tạng, và tổng cộng 59 điểm mẫu đã được chọn với khoảng cách 25–30 km cho khảo sát và lấy mẫu tại hiện trường. Các mô hình và yếu tố tác động đến tỷ lệ cân bằng dinh dưỡng trong đất dưới các loại hình sử dụng đất khác nhau được nghiên cứu thông qua việc đo các thuộc tính của đất ở các độ sâu khác nhau (0–10 cm, 10–20 cm và 20–30 cm). Carbon hữu cơ trong đất (SOC), nitơ tổng (TN), tỷ lệ C:N, C:P và N:P trong FO và GR cao hơn so với FA, trong khi tổng photpho (TP) lại thể hiện xu hướng ngược lại. Cả hàm lượng SOC và tỷ lệ C:P đều bị ảnh hưởng đáng kể bởi độ sâu của đất (p < 0.05), cho thấy xu hướng giảm khi độ sâu của đất tăng lên. TN, TP, C:N và N:P không bị ảnh hưởng bởi độ sâu của đất (p > 0.05). Phân tích redundancy cho thấy lượng mưa trung bình hàng năm, tổng độ rỗng và độ dốc là những yếu tố chính ảnh hưởng đến tỷ lệ cân bằng dinh dưỡng trong FA và FO, trong khi tỷ lệ cân bằng dinh dưỡng trong GR chủ yếu bị ảnh hưởng bởi mật độ khối, độ cao và độ dốc. Trong mô hình rừng ngẫu nhiên, các thuộc tính của đất, khí hậu và địa hình có thể giải thích chung 60.81⁓84.78% tổng biến thiên về hàm lượng SOC, TN, TP và các tỷ lệ cân bằng dinh dưỡng. Những phát hiện của chúng tôi cho thấy hàm lượng SOC, TN, TP và các tỷ lệ của chúng bị ảnh hưởng đáng kể bởi các mô hình sử dụng đất và rằng các yếu tố tác động đến nồng độ SOC, TN, TP và các tỷ lệ cân bằng dinh dưỡng là khác nhau. Công trình này cung cấp cơ sở để hiểu các quá trình của hệ sinh thái và thiết kế các quyết định quản lý đất và môi trường bền vững trong các vùng núi cao.
Từ khóa
Tài liệu tham khảo
Achat DL, Bakker MR, Augusto L, Derrien D, Gallegos N, Lashchinskiy N, Milin S, Nikitich P, Raudina T, Rusalimova O, Zeller B, Barsukov P (2013) Phosphorus status of soils from contrasting forested ecosystems in southwestern Siberia: effects of microbiological and physicochemical properties. Biogeosciences 10(2):733–752
Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3(5):336–340
Ambarli D, Bilgin CC (2014) Effects of landscape, land use and vegetation on bird community composition and diversity in Inner Anatolian steppes. Agric Ecosyst Environ 182:37–46
Azene B, Qiu P, Zhu R, Pan K, Sun X, Nigussie Y, Yigez B, Gruba P, Wu XG, Zhang L (2022) Response of soil phosphorus fractions to land use change in the subalpine ecosystems of Southeast margin of Qinghai-Tibet Plateau, Southwest China. Ecol Indic 144:109432
Bai YF, Chen SY, Shi SR, Qi MJ, Liu XH, Wang H, Wang YX, Jiang CQ (2020) Effects of different management approaches on the stoichiometric characteristics of soil C, N, and P in a mature Chinese fir plantation. Sci Total Environ 723:137868
Bessler H, Temperton VM, Roscher C, Buchmann N, Schmid B, Schulze ED, Weisser WW, Engels C (2009) Aboveground overyielding in grassland mixtures is associated with reduced biomass partitioning to belowground organs. Ecology 90(6):1520–1530
Blake GR, Hartge KH (1986) Bulk density. In: Klute A (ed) Methods of soil analysis, Part 1, 2nd Ed. Agron. monogr. No. 9. ASA and SSSA, Madison, WI, pp 363–375
Bohlool BB, Ladha JK, Garrity DP, George T (1992) Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 141(1–2):1–11
Breiman L (2001) Random forests. Mach Learn 45:5–32
Bremner JM, Tabatabai MA (1972) Use of an ammonia electrode for determination of ammonium in Kjeldahl analysis of soils. Commun Soil Sci Plant Anal 3:159–165
Bui EN, Henderson BL (2013) C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant Soil 373(1–2):553–568
Camenzind T, Mason-Jones K, Mansour I, Rillig MC, Lehmann J (2023) Formation of necromass-derived soil organic carbon determined by microbial death pathways. Nat Geosci 16(2):115–122
Carter MR, Gregorich EG (2007) Soil sampling and methods of analysis (2nd ed.). CRC Press
Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–497
Chai H, Yu GR, He NP, Wen D, Li J, Fang JP (2015) Vertical distribution of soil carbon, nitrogen, and phosphorus in typical Chinese terrestrial ecosystems. Chin Geogr Sci 25(5):549–560
Chen LL, Deng Q, Yuan ZY, Mu XM, Kallenbach RL (2018) Age-related C:N:P stoichiometry in two plantation forests in the Loess Plateau of China. Ecol Eng 120:14–22
Chen LL, Wang KX, Baoyin T (2021) Effects of grazing and mowing on vertical distribution of soil nutrients and their stoichiometry (C: N: P) in a semi-arid grassland of North China. Catena 206:105507
Chen MY, Yang X, Shao MA, Wei XR, Li TC (2022a) Changes in soil C-N-P stoichiometry after 20 years of typical artificial vegetation restoration in semiarid continental climate zones. Sci Total Environ 852:158380
Chen QQ, Shi Z, Chen SC, Gou YX, Zhuo ZQ (2022b) Role of environment variables in spatial distribution of soil C, N, P ecological stoichiometry in the typical black soil region of Northeast China. Sustainability 14(5):2636
Chen Y, Li YQ, Duan YL, Wang LL, Wang XY, Yao CP, Chen YP, Cao WJ, Niu YY (2022c) Patterns and driving factors of soil ecological stoichiometry in typical ecologically fragile areas of China. Catena 219:106628
Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252
Cui H, Ou Y, Lv D, Wang LX, Liang AZ, Yan BX, Li YX (2020) Aggregate-related microbial communities and nutrient stoichiometry under different croplands. Ecol Process 9(1):33
D’Alò F, Odriozola I, Baldrian P, Zucconi L, Ripa C, Cannone N, Malfasi F, Brancaleoni L, Onofri S (2021) Microbial activity in alpine soils under climate change. Sci Total Environ 783:147012
Deng J, Sun P, Zhao F, Han X, Yang G, Feng Y, Ren G (2016) Soil C, N, P and its stratification ratio affected by artificial vegetation in subsoil, Loess Plateau China. PLoS One 11(3):e0151446
Dick WA, Cheng L, Wang P (2000) Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biol Biochem 32:1915–1919
Du L, Zhang XZ, Zheng ZC, Li TX, Wang YD, Huang HG, Yu HY, Ye DH, Liu T (2020) Paddy soil nutrients and stoichiometric ratios as affected by anthropogenic activities during long-term tillage process in Chengdu Plain. J Soils Sediments 20(11):3835–3845
Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010) Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol 186(3):593–608
FAO (2014) World Reference Base for Soil Resources 2014. World Soil Resour. Rep. 106. FAO, Rome
Hall K, Thorn CE, Matsuoka N, Prick A (2002) Weathering in cold regions: some thoughts and perspectives. Prog Phys Geogr 26(4):577–603
He XL, Ma J, Jin M, Li Z (2023) Characteristics and controls of ecological stoichiometry of shrub leaf in the alpine region of northwest China. Catena 224:107005
Hu J, Zhou DW, Li Q, Wang QC (2020) Vertical distributions of soil nutrients and their stoichiometric ratios as affected by long term grazing and enclosing in a semi-arid grassland of Inner Mongolia. Agriculture-Basel 10(9):382
Hui DF, Yang XT, Deng Q, Liu Q, Wang X, Yang H, Ren H (2021) Soil C:N:P stoichiometry in tropical forests on Hainan Island of China: spatial and vertical variations. Catena 201:105228
Jiao SY, Zhang M, Wang YM, Liu JQ, Li YQ (2014) Variation of soil nutrients and particle size under different vegetation types in the Yellow River Delta. Acta Geol Sin 34(3):148–153
Jiao SY, Li JR, Li YQ, Xu ZY, Kong BS, Li Y, Shen YW (2020) Variation of soil organic carbon and physical properties in relation to land uses in the Yellow River Delta. China Sci Rep 10(1):20317
John MK (1970) Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Sci 109:214–220
Kalembasa SJ, Jenkinson DS (1973) A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. J Sci Food Agric 24(9):1085–1090
Kumar CM, Ghoshal N (2017) Impact of land-use change on soil microbial community composition and organic carbon content in the dry tropics. Pedosphere 27(5):974–977
Li XY, Ma YJ, Xu HY, Wang JH, Zhang DS (2009) Impact of land use and land cover change on environmental degradation in lake Qinghai watershed, northeast Qinghai-Tibet Plateau. Land Degrad Dev 20(1):69–83
Li Y, Wu J, Liu S, Shen J, Huang D, Su Y, Wei W, Syers JK (2012) Is the C:N: P stoichiometry in soil and soil microbial biomass related to the landscape and land use in southern subtropical China? Glob Biogeochem Cycles 26:GB4002
Liu X, Ma J, Ma ZW, Li LH (2017) Soil nutrient contents and stoichiometry as affected by land-use in an agro-pastoral region of northwest China. Catena 150:146–153
Lu JN, Feng S, Wang SK, Zhang BL, Ning ZY, Wang RX, Chen XP, Yu LL, Zhao HS, Lan DM, Zhao XY (2023) Patterns and driving mechanism of soil organic carbon, nitrogen, and phosphorus stoichiometry across northern China’s desert-grassland transition zone. Catena 220:106695
Luo WT, Dijkstra FA, Bai E, Feng J, Lu XT, Wang C, Wu HH, Li MH, Han XG, Jiang Y (2016) A threshold reveals decoupled relationship of sulfur with carbon and nitrogen in soils across arid and semi-arid grasslands in northern China. Biogeochemistry 127(1):141–153
Luo GW, Xue C, Jiang QH, Xiao Y, Zhang FG, Guo SW, Shen QR, Ling N (2020) Soil carbon, nitrogen, and phosphorus cycling microbial populations and their resistance to global change depend on soil C: N: P stoichiometry. Msystems 5(3):e00162–e0e220
Lv MX, Wang YB, Gao ZY (2022) The change process of soil hydrological properties in the permafrost active layer of the Qinghai-Tibet Plateau. Catena 210:105938
Ma RT, Hu FN, Liu JF, Wang CL, Wang ZL, Liu G, Zhao SW (2020) Shifts in soil nutrient concentrations and C:N:P stoichiometry during long-term natural vegetation restoration. PeerJ 8:e8382
Maaroufi NI, De Long JR (2020) Global change impacts on forest soils: linkage between soil biota and carbon-nitrogen-phosphorus stoichiometry. Front For Glob Change 3:16
McLauchlan KK (2006) Effects of soil texture on soil carbon and nitrogen dynamics after cessation of agriculture. Geoderma 136(1–2):289–299
McQuilkin WE (1940) The natural establishment of pine in abandoned fields in the Piedmont Plateau region. Ecology 21(2):135–147
Meurer K, Barron J, Chenu C, Coucheney E, Fielding M, Hallett P, Herrmann AM, Keller T, Koestel J, Larsbo M, Lewan E, Or D, Parsons D, Parvin N, Taylor A, Vereecken H, Jarvis N (2020) A framework for modelling soil structure dynamics induced by biological activity. Glob Chang Biol 26(10):5382–5403
Michaels AF (2003) Ecological stoichiometry - the biology of elements from molecules to the biosphere. Science 300:906–907
Moinard V, Levavasseur F, Houot S (2021) Current and potential recycling of exogenous organic matter as fertilizers and amendments in a French peri-urban territory. Resour Conserv Recycl 169:105523
Muller M, Oelmann Y, Schickhoff U, Bohner J, Scholten T (2017) Himalayan treeline soil and foliar C:N:P stoichiometry indicate nutrient shortage with elevation. Geoderma 291:21–32
National Soil Survey Office (1998) China soil (in Chinese). China Agriculture Press, Beijing
Nie XQ, Wang D, Chen YZ, Yang LC, Zhou GY (2022) Storage, distribution, and associated controlling factors of soil total phosphorus across the northeastern Tibetan Plateau shrublands. J Soil Sci Plant Nutr 22(3):2933–2942
Nie XQ, Wang D, Ren LN, Du YG, Zhou GY (2023a) Storage and controlling factors of soil organic carbon in alpine wetlands and meadow across the Tibetan Plateau. Eur J Soil Sci 74(3):e13383
Nie XQ, Wang D, Ren LN, Zhou GY, Du YG (2023b) Soil N:P ratio and its regulation factors in alpine wetlands across the Three Rivers Source Region. J Soil Sci Plant Nutr 23(1):1138–1148
Page AL, Miller RH, Kenney DR (1982) Methods of soil analysis part 2 (Agronomy Monographs 9). American Society of Agronomy, Madison, Wisconsin, USA
Pan JX, Wang JS, Zhang RY, Tian DS, Cheng XL, Wang S, Chen C, Yang L, Niu SL (2021) Microaggregates regulated by edaphic properties determine the soil carbon stock in Tibetan alpine grasslands. Catena 206:105570
Paungfoo-Lonhienne C, Redding M, Pratt C, Wang WJ (2019) Plant growth promoting rhizobacteria increase the efficiency of fertilisers while reducing nitrogen loss. J Environ Manag 233:337–341
Penuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA (2013) Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat Commun 4:2934
Reich PB, Hobbie SE, Lee TD, Rich R, Pastore MA, Worm K (2020) Synergistic effects of four climate change drivers on terrestrial carbon cycling. Nat Geosci 13:787–793
Sardans J, Rivas-Ubach A, Penuelas J (2012) The C:N:P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives. Perspect Plant Ecol Evol Syst 14(1):33–47
Siedt M, Schaffer A, Smith KEC, Nabel M, Ross-Nickoll M, van Dongen JT (2021) Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci Total Environ 751:141607
Sun WX, Huang B, Qu MK, Tian K, Yao LP, Fu MM, Yin LP (2015) Effect of farming practices on the variability of phosphorus status in intensively managed soils. Pedosphere 25(3):438–449
Sun J, Liu BY, You Y, Li WP, Liu M, Shang H, He JS (2019) Solar radiation regulates the leaf nitrogen and phosphorus stoichiometry across alpine meadows of the Tibetan Plateau. Agric For Meteorol 271:92–101
Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS (2010) Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data. Biogeochemistry 98(1–3):139–151
Tian LM, Zhao L, Wu XD, Fang HB, Zhao YH, Hu GJ, Yu GY, Sheng Y, Wu JC, Chen J, Wang ZW, Li WP, Zou DF, Ping CL, Shang W, Zhao YG, Zhang GL (2018) Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland. Sci Total Environ 622:192–202
Wang SQ, Yu GR (2008) Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements (In Chinese). Acta Geol Sin 28(8):3937–3947
Wang ZW, Huang LM, Shao MA (2023) Spatial variations and influencing factors of soil organic carbon under different land use types in the alpine region of Qinghai-Tibet Plateau. Catena 220:106706
Wei XR, Shao MA (2007) The distribution of soil nutrients on sloping land in the gully region watershed of the loess plateau (In Chinese). Acta Ecol Sin 27:603–612
Wei XR, Huang MB, Shao MA, Li L, Zhang X, Horton R (2013) Shrubs increase soil resources heterogeneity along semiarid grass slopes in the loess plateau. J Arid Environ 88:175–183
Wu XD, Zhao L, Fang HB, Zhao YG, Smoak JM, Pang QQ, Ding YJ (2016) Environmental controls on soil organic carbon and nitrogen stocks in the high-altitude arid western Qinghai-Tibetan Plateau permafrost region. J Geophys Res Biogeosci 121(1):176–187
Wu TH, Ma WS, Wu XD, Li R, Qiao YP, Li XF, Yue GY, Zhu XF, Ni J (2022) Weakening of carbon sink on the Qinghai-Tibet Plateau. Geoderma 412:115707
Xu XF, Thornton PE, Post WM (2013) A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob Ecol Biogeogr 22(6):737–749
Yang YH, Luo YQ (2011) Carbon: nitrogen stoichiometry in forest ecosystems during stand development. Glob Ecol Biogeogr 20(2):354–361
Yang MX, Nelson FE, Shiklomanov NI, Guo DL, Wan GN (2010) Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth-Sci Rev 103(1–2):31–44
Yang Y, Liu BR, An SS (2018) Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China. Catena 166:328–338
Yang MH, Gao XD, Zhao XN, Wu PT (2021) Scale effect and spatially explicit drivers of interactions between ecosystem services-a case study from the Loess Plateau. Sci Total Environ 785:147389
Yu ZP, Wang MH, Huang ZQ, Lin TC, Vadeboncoeur MA, Searle EB, Chen HYH (2018) Temporal changes in soil C-N-P stoichiometry over the past 60 years across subtropical China. Glob Chang Biol 24(3):1308–1320
Zhang Y, Li P, Liu XJ, Xiao L, Shi P, Zhao BH (2019) Effects of farmland conversion on the stoichiometry of carbon, nitrogen, and phosphorus in soil aggregates on the Loess Plateau of China. Geoderma 351:188–196
Zhang AL, Li XY, Wu SX, Li L, Jiang Y, Wang RZ, Ahmed ZS, Zeng FJ, Lin LS, Li L (2021) Spatial pattern of C:N:P stoichiometry characteristics of alpine grassland in the Altunshan Nature Reserve at North Qinghai-Tibet Plateau. Catena 207:105691
Zhang GL, Yang F, Long H (2023) Save the life-sustaining mattic layer on the Qinghai-Tibetan Plateau. The Innovation 4(3):100418
Zhao W, Huang LM (2023) Changes in soil nutrients and stoichiometric ratios reveal increasing phosphorus deficiency along a tropical soil chronosequence. Catena 222:106893
