Pattern formation and spatial chaos in lattice dynamical systems. I

Institute of Electrical and Electronics Engineers (IEEE) - Tập 42 Số 10 - Trang 746-751 - 1995
John Mallet‐Paret1, Shui-Nee Chow2
1Div. of Appl. Math., Brown Univ., Providence, RI, USA
2School of Mathematics, Georgia Institute of Technology, Atlanta, GA USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

chow, 1994, Stability and bifurcation of traveling wave solutions in coupled map lattices, Dyn Syst Appl, 4, 1

chow, 0, Dynamics in a discrete Nagumo equation?Spatial chaos, SIAM J Appl Math

10.1109/81.222795

10.1109/31.7600

10.1109/31.7601

10.1007/978-3-642-75292-6

hale, 1993, Introduction to Functional Differential Equations, 10.1007/978-1-4612-4342-7

10.1007/BF01053165

10.1137/0147038

10.1109/81.473584

afraimovich, 0, Hyperbolic homoclinic points of Z actions in lattice dynamical systems

10.1006/jdeq.1993.1082

afraimovich, 0, Topological spatial chaos and homoclinic points of Z<superscript>2</superscript>-action in lattice dynamical systems, Japan J Indust Appl Math

cahn, 0, Bifurcation phenomena in lattice differential equations

10.1016/0001-6160(60)90110-3

cahn, 0, Traveling wave solutions for systems of ODE's on a two-dimensional spatial lattice

10.1216/rmjm/1181072270

afraimovich, 0, Density of defects and spatial entropy in extended systems

10.1016/0022-0396(80)90104-7

afraimovich, 1992, Class notes on lattice dynamical systems, Georgia Inst Technology

10.1007/BF01790539

10.1109/81.251828

10.1017/S0308210500029772

10.1109/82.222815

10.1142/S0218127492000380

10.1016/0022-0396(92)90142-A

10.1137/0522066