Pattern Electroretinograms in Preperimetric and Perimetric Glaucoma

American Journal of Ophthalmology - Tập 215 - Trang 118-126 - 2020
Kyoung In Jung1, Sooji Jeon1, Da Young Shin1, Jiyun Lee1, Chan Kee Park1
1Department of Ophthalmology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea

Tài liệu tham khảo

Allingham, 2010, 168 Yablonski, 1980, Prognostic significance of optic disk cupping in ocular hypertensive patients, Am J Ophthalmol, 89, 585, 10.1016/0002-9394(80)90071-9 Caprioli, 1987, Quantitative evaluation of the optic nerve head in patients with unilateral visual field loss from primary open-angle glaucoma, Ophthalmology, 94, 1484, 10.1016/S0161-6420(87)33264-6 Zeyen, 1992, Disc and field damage in patients with unilateral visual field loss from primary open-angle glaucoma, Doc Ophthalmol, 82, 279, 10.1007/BF00161015 Larrosa, 2012, Predictive value of confocal scanning laser for the onset of visual field loss in glaucoma suspects, Ophthalmology, 119, 1558, 10.1016/j.ophtha.2012.02.031 Sommer, 1991, Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss, Arch Ophthalmol, 109, 77, 10.1001/archopht.1991.01080010079037 Jonas, 1994, Localised wedge shaped defects of the retinal nerve fibre layer in glaucoma, Br J Ophthalmol, 78, 285, 10.1136/bjo.78.4.285 Tatham, 2013, Estimated retinal ganglion cell counts in glaucomatous eyes with localized retinal nerve fiber layer defects, Am J Ophthalmol, 156, 578, 10.1016/j.ajo.2013.04.015 Kerrigan-Baumrind, 2000, Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons, Invest Ophthalmol Vis Sci, 41, 741 Bach, 2013, Electrophysiology and glaucoma: current status and future challenges, Cell Tissue Res, 353, 287, 10.1007/s00441-013-1598-6 Bach, 2008, Update on the pattern electroretinogram in glaucoma, Optom Vis Sci, 85, 386, 10.1097/OPX.0b013e318177ebf3 Bowd, 2009, Diagnostic accuracy of pattern electroretinogram optimized for glaucoma detection, Ophthalmology, 116, 437, 10.1016/j.ophtha.2008.10.026 Tafreshi, 2010, Pattern electroretinogram and psychophysical tests of visual function for discriminating between healthy and glaucoma eyes, Am J Ophthalmol, 149, 488, 10.1016/j.ajo.2009.09.027 Preiser, 2013, Photopic negative response versus pattern electroretinogram in early glaucoma, Invest Ophthalmol Vis Sci, 54, 1182, 10.1167/iovs.12-11201 Wanger, 1987, Pattern-reversal electroretinograms and high-pass resolution perimetry in suspected or early glaucoma, Ophthalmology, 94, 1098, 10.1016/S0161-6420(87)33318-4 Pfeiffer, 1993, Predictive value of the pattern electroretinogram in high-risk ocular hypertension, Invest Ophthalmol Vis Sci, 34, 1710 Bode, 2011, Pattern electroretinogram in glaucoma suspects: new findings from a longitudinal study, Invest Ophthalmol Vis Sci, 52, 4300, 10.1167/iovs.10-6381 Quigley, 1981, Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage, Arch Ophthalmol, 99, 635, 10.1001/archopht.1981.03930010635009 Fortune, 2012, Structural and functional abnormalities of retinal ganglion cells measured in vivo at the onset of optic nerve head surface change in experimental glaucoma, Invest Ophthalmol Vis Sci, 53, 3939, 10.1167/iovs.12-9979 Xu, 2014, Optic nerve head deformation in glaucoma: the temporal relationship between optic nerve head surface depression and retinal nerve fiber layer thinning, Ophthalmology, 121, 2362, 10.1016/j.ophtha.2014.06.035 Mwanza, 2011, Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma, Invest Ophthalmol Vis Sci, 52, 8323, 10.1167/iovs.11-7962 Shin, 2013, Comparative study of macular ganglion cell-inner plexiform layer and peripapillary retinal nerve fiber layer measurement: structure-function analysis, Invest Ophthalmol Vis Sci, 54, 7344, 10.1167/iovs.13-12667 Fleiss, 1986, 1 Pinto, 2014, Structure-function correlations in glaucoma using matrix and standard automated perimetry versus time-domain and spectral-domain OCT devices, Invest Ophthalmol Vis Sci, 55, 3074, 10.1167/iovs.13-13664 Cvenkel, 2017, Ganglion cell loss in early glaucoma, as assessed by photopic negative response, pattern electroretinogram, and spectral-domain optical coherence tomography, Doc Ophthalmol, 135, 17, 10.1007/s10633-017-9595-9 Kreuz, 2018, Macular and multifocal PERG and FD-OCT in preperimetric and hemifield loss glaucoma, J Glaucoma, 27, 121, 10.1097/IJG.0000000000000857 Choi, 2009, Interpretation of the Humphrey Matrix 24-2 test in the diagnosis of preperimetric glaucoma, Jpn J Ophthalmol, 53, 24, 10.1007/s10384-008-0604-0 Jung, 2017, Detection of functional change in preperimetric and perimetric glaucoma using 10-2 matrix perimetry, Am J Ophthalmol, 182, 35, 10.1016/j.ajo.2017.07.007 Ventura, 2006, The relationship between retinal ganglion cell function and retinal nerve fiber thickness in early glaucoma, Invest Ophthalmol Vis Sci, 47, 3904, 10.1167/iovs.06-0161 Banitt, 2013, Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects, Invest Ophthalmol Vis Sci, 54, 2346, 10.1167/iovs.12-11026 Lisboa, 2012, Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography, Ophthalmology, 119, 2261, 10.1016/j.ophtha.2012.06.009 Lisboa, 2013, Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma, Invest Ophthalmol Vis Sci, 54, 3417, 10.1167/iovs.13-11676 Porciatti, 2004, Normative data for a user-friendly paradigm for pattern electroretinogram recording, Ophthalmology, 111, 161, 10.1016/j.ophtha.2003.04.007 Bach, 2013, Pattern electroretinogram to detect glaucoma: comparing the PERGLA and the PERG Ratio protocols, Doc Ophthalmol, 127, 227, 10.1007/s10633-013-9412-z