Patient-specific neurosurgical phantom: assessment of visual quality, accuracy, and scaling effects
Tóm tắt
Từ khóa
Tài liệu tham khảo
Rolston JD, Bernstein M. Errors in Neurosurgery. Neurosurg Clin N Am. 2015;26(2):149–55. https://doi.org/10.1016/j.nec.2014.11.011 .
Oremakinde AA, Bernstein M. A reduction in errors is associated with prospectively recording them. J Neurosurg. 2014;121(2):297–304. https://doi.org/10.3171/2014.5.JNS132341 .
Stal D, Hollier L. Prospective Error Recording in Surgery: An Analysis of 1108 Elective Neurosurgical Cases. J Craniofac Surg. 2007;18(5):1244. https://doi.org/10.1097/scs.0b013e31814b2b7c .
Mezger U, Jendrewski C, Bartels M. Navigation in surgery. Langenbeck's Arch Surg. 2013;398(4):501–14. https://doi.org/10.1007/s00423-013-1059-4 .
Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph Off J Comput Med Imaging Soc. 2007;31(4–5):198–211. https://doi.org/10.1016/j.compmedimag.2007.02.002 .
Grunert P, Darabi K, Espinosa J, Filippi R. Computer-aided navigation in neurosurgery. Neurosurg Rev. 2003;26(2):73–99. discussion 100-101
Gasco J, Holbrook TJ, Patel A, et al. Neurosurgery simulation in residency training: feasibility, cost, and educational benefit. Neurosurgery. 2013;73(Suppl 1):39–45. https://doi.org/10.1227/NEU.0000000000000102 .
T. Forcht Dagi. Commentary: The Roles and Future of Simulation in Neurosurgery. Neurosurgery. 2013;73: S4–S5. https://doi.org/10.1093/neurosurgery/73.suppl_1.S4 .
Gélinas-Phaneuf N, Del Maestro RF. Surgical expertise in neurosurgery: integrating theory into practice. Neurosurgery. 2013;73(Suppl 1):30–8. https://doi.org/10.1227/NEU.0000000000000115 .
McLachlan JC, Bligh J, Bradley P, Searle J. Teaching anatomy without cadavers. Med Educ. 2004;38(4):418–24. https://doi.org/10.1046/j.1365-2923.2004.01795.x .
Bradley P. The history of simulation in medical education and possible future directions. Med Educ. 2006;40(3):254–62. https://doi.org/10.1111/j.1365-2929.2006.02394.x .
McGaghie WC, Issenberg SB, Petrusa ER, Scalese RJ. A critical review of simulation-based medical education research: 2003–2009. Med Educ. 2010;44(1):50–63. https://doi.org/10.1111/j.1365-2923.2009.03547.x .
Ziv A, Wolpe PR, Small SD, Glick S. Simulation-based medical education: an ethical imperative. Acad Med. 2003;78(8):783–8.
Kunkler K. The role of medical simulation: an overview. Int J Med Robot. 2006;2(3):203–10. https://doi.org/10.1002/rcs.101 .
Schirmer CM, Elder JB, Roitberg B, Lobel DA. Virtual reality-based simulation training for ventriculostomy: an evidence-based approach. Neurosurgery. 2013;73(Suppl 1):66–73. https://doi.org/10.1227/NEU.0000000000000074 .
Müns A, Mühl C, Haase R, et al. A neurosurgical phantom-based training system with ultrasound simulation. Acta Neurochir. 2014;156(6):1237–43. https://doi.org/10.1007/s00701-013-1918-3 .
Madsen EL, Hobson MA, Shi H, Varghese T, Frank GR. Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms. Phys Med Biol. 2005;50(23):5597–618. https://doi.org/10.1088/0031-9155/50/23/013 .
Cook JR, Bouchard RR, Emelianov SY. Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging. Biomed Opt Express. 2011;2(11):3193–206. https://doi.org/10.1364/BOE.2.003193 .
Madsen EL, Zagzebski JA, Frank GR. Oil-in-gelatin dispersions for use as ultrasonically tissue-mimicking materials. Ultrasound Med Biol. 1982;8(3):277–87. https://doi.org/10.1016/0301-5629(82)90034-5 .
Cabrelli LC, Grillo FW, Carneiro AAO, Pavan TZ. Copolymer-in-oil tissue-mimicking material with tunable acoustic properties. IEEE International Ultrasonics Symposium (IUS). 2016:1–4. https://doi.org/10.1109/ULTSYM.2016.7728859 .
Oudry J, Bastard C, Miette V, Willinger R, Sandrin L. Copolymer-in-oil phantom materials for elastography. Ultrasound Med Biol. 2009;35(7):1185–97. https://doi.org/10.1016/j.ultrasmedbio.2009.01.012 .
D’Souza WD, Madsen EL, Unal O, Vigen KK, Frank GR, Thomadsen BR. Tissue mimicking materials for a multi-imaging modality prostate phantom. Med Phys. 2001;28(4):688–700. https://doi.org/10.1118/1.1354998 .
Cabrelli LC, Pelissari PIBGB, Deana AM, Carneiro AAO, Pavan TZ. Stable phantom materials for ultrasound and optical imaging. Phys Med Biol. 2017;62(2):432–47. https://doi.org/10.1088/1361-6560/62/2/432 .
Choi J-Y, Choi J-H, Kim N-K, et al. Analysis of errors in medical rapid prototyping models. Int J Oral Maxillofac Surg. 2002;31(1):23–32. https://doi.org/10.1054/ijom.2000.0135 .
Cooper J, Taqueti V. A Brief history of the development of mannequin simulators for clinical education and training. Qual Saf Health Care. 2004;13(Suppl 1):i11–8. https://doi.org/10.1136/qshc.2004.009886 .
Filho FVG, Coelho G, Cavalheiro S, Lyra M, Zymberg ST. Quality assessment of a new surgical simulator for neuroendoscopic training. Neurosurg Focus. 2011;30(4):E17. https://doi.org/10.3171/2011.2.FOCUS10321 .
Rocco CD, Tamburrini G. Sturge–Weber syndrome. Childs Nerv Syst. 2006;22(8):909. https://doi.org/10.1007/s00381-006-0143-2 .
Amorim P, Moraes T, Silva J, InVesalius PH. An interactive rendering framework for health care support. In: Advances in Visual Computing. Cham: Springer; 2015. p. 45–54. https://doi.org/10.1007/978-3-319-27857-5_5 .
Tsai A, Barnewolt CE, Prahbu SP, et al. Creation and validation of a simulator for neonatal brain ultrasonography. A Pilot Study Acad Radiol. 2017;24(1):76–83. https://doi.org/10.1016/j.acra.2016.09.007 .
Pieper S, Halle M, Kikinis R. 3D Slicer. In: 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), vol. 1; 2004. p. 632–5. https://doi.org/10.1109/ISBI.2004.1398617 .
Amorim P, Moraes T, Silva J, Pedrini H. InVesalius: An interactive rendering framework for health care support. In: Bebis G, Boyle R, Parvin B, Koracin D, Pavlidis I, Feris R, et al., editors. Adv. Vis. Comput. 11th Int. Symp. ISVC 2015, Las Vegas, NV, USA, December 14-16, 2015, Proceedings, Part I, Cham, Switzerland: Springer International Publishing; 2015. p. 45–54. https://doi.org/10.1007/978-3-319-27857-5_5 .
Seitz H, Tille C, Irsen S, Bermes G, Sader R, Zeilhofer H-F. Rapid prototyping models for surgical planning with hard and soft tissue representation. Int Congr Ser. 2004;1268:567–72. https://doi.org/10.1016/j.ics.2004.03.139 .
Tsuji M, Noguchi N, Ihara K, Yamashita Y, Shikimori M, Goto M. Fabrication of a maxillofacial prosthesis using a computer-aided design and manufacturing system. J Prosthodont. 2004;13(3):179–83. https://doi.org/10.1111/j.1532-849X.2004.04029.x .
Randazzo M, Pisapia JM, Singh N, Thawani JP. 3D printing in neurosurgery: a systematic review. Surg Neurol Int. 2016;7(Suppl 33):S801–9. https://doi.org/10.4103/2152-7806.194059 .
Khan IS, Kelly PD, Singer RJ. Prototyping of cerebral vasculature physical models. Surgical Neurology International. 2014;5:11. https://doi.org/10.4103/2152-7806.125858 .
KONDO K, NEMOTO M, MASUDA H, et al. Anatomical reproducibility of a head model molded by a three-dimensional printer. Neurol Med Chir (Tokyo). 2015;55(7):592–8. https://doi.org/10.2176/nmc.oa.2014-0436 .
Weinstock P, Rehder R, Prabhu SP, Forbes PW, Roussin CJ, Cohen AR. Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects. J Neurosurg Pediatr. 2017:1–9. https://doi.org/10.3171/2017.1.PEDS16568 .
Salmi M, Paloheimo K-S, Tuomi J, Wolff J, Mäkitie A. Accuracy of medical models made by additive manufacturing (rapid manufacturing). J Cranio-Maxillofac Surg. 2013;41(7):603–9. https://doi.org/10.1016/j.jcms.2012.11.041 .
Cohen FL, Mendelsohn D, Bernstein M. Wrong-site craniotomy: analysis of 35 cases and systems for prevention. J Neurosurg. 2010;113(3):461–73. https://doi.org/10.3171/2009.10.JNS091282 .
Ramsay CR, Grant AM, Wallace SA, Garthwaite PH, Monk AF, Russell IT. Assessment of the learning curve in health technologies. A systematic review. Int J Technol Assess Health Care. 2000;16(4):1095–108.