Patient-specific neurosurgical phantom: assessment of visual quality, accuracy, and scaling effects

Felipe Fardin Grillo1, Victor H. Souza1, Renan H. Matsuda1, Carlo Rondinoni1, Theo Z. Pavan1, Oswaldo Baffa1, Hélio Rubens Machado2, Antônio Adilton Oliveira Carneiro1
1Department of Physics, Faculty of Philosophy, Science and Letters at Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP, CEP 14040-901, Brazil
2Department of Surgery and Anatomy, Faculty of Medicine at Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Rolston JD, Bernstein M. Errors in Neurosurgery. Neurosurg Clin N Am. 2015;26(2):149–55. https://doi.org/10.1016/j.nec.2014.11.011 .

Oremakinde AA, Bernstein M. A reduction in errors is associated with prospectively recording them. J Neurosurg. 2014;121(2):297–304. https://doi.org/10.3171/2014.5.JNS132341 .

Stal D, Hollier L. Prospective Error Recording in Surgery: An Analysis of 1108 Elective Neurosurgical Cases. J Craniofac Surg. 2007;18(5):1244. https://doi.org/10.1097/scs.0b013e31814b2b7c .

Mezger U, Jendrewski C, Bartels M. Navigation in surgery. Langenbeck's Arch Surg. 2013;398(4):501–14. https://doi.org/10.1007/s00423-013-1059-4 .

Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph Off J Comput Med Imaging Soc. 2007;31(4–5):198–211. https://doi.org/10.1016/j.compmedimag.2007.02.002 .

Grunert P, Darabi K, Espinosa J, Filippi R. Computer-aided navigation in neurosurgery. Neurosurg Rev. 2003;26(2):73–99. discussion 100-101

Gasco J, Holbrook TJ, Patel A, et al. Neurosurgery simulation in residency training: feasibility, cost, and educational benefit. Neurosurgery. 2013;73(Suppl 1):39–45. https://doi.org/10.1227/NEU.0000000000000102 .

T. Forcht Dagi. Commentary: The Roles and Future of Simulation in Neurosurgery. Neurosurgery. 2013;73: S4–S5. https://doi.org/10.1093/neurosurgery/73.suppl_1.S4 .

Gélinas-Phaneuf N, Del Maestro RF. Surgical expertise in neurosurgery: integrating theory into practice. Neurosurgery. 2013;73(Suppl 1):30–8. https://doi.org/10.1227/NEU.0000000000000115 .

McLachlan JC, Bligh J, Bradley P, Searle J. Teaching anatomy without cadavers. Med Educ. 2004;38(4):418–24. https://doi.org/10.1046/j.1365-2923.2004.01795.x .

Bradley P. The history of simulation in medical education and possible future directions. Med Educ. 2006;40(3):254–62. https://doi.org/10.1111/j.1365-2929.2006.02394.x .

McGaghie WC, Issenberg SB, Petrusa ER, Scalese RJ. A critical review of simulation-based medical education research: 2003–2009. Med Educ. 2010;44(1):50–63. https://doi.org/10.1111/j.1365-2923.2009.03547.x .

Ziv A, Wolpe PR, Small SD, Glick S. Simulation-based medical education: an ethical imperative. Acad Med. 2003;78(8):783–8.

Kunkler K. The role of medical simulation: an overview. Int J Med Robot. 2006;2(3):203–10. https://doi.org/10.1002/rcs.101 .

Schirmer CM, Elder JB, Roitberg B, Lobel DA. Virtual reality-based simulation training for ventriculostomy: an evidence-based approach. Neurosurgery. 2013;73(Suppl 1):66–73. https://doi.org/10.1227/NEU.0000000000000074 .

Müns A, Mühl C, Haase R, et al. A neurosurgical phantom-based training system with ultrasound simulation. Acta Neurochir. 2014;156(6):1237–43. https://doi.org/10.1007/s00701-013-1918-3 .

Madsen EL, Hobson MA, Shi H, Varghese T, Frank GR. Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms. Phys Med Biol. 2005;50(23):5597–618. https://doi.org/10.1088/0031-9155/50/23/013 .

Cook JR, Bouchard RR, Emelianov SY. Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging. Biomed Opt Express. 2011;2(11):3193–206. https://doi.org/10.1364/BOE.2.003193 .

Madsen EL, Zagzebski JA, Frank GR. Oil-in-gelatin dispersions for use as ultrasonically tissue-mimicking materials. Ultrasound Med Biol. 1982;8(3):277–87. https://doi.org/10.1016/0301-5629(82)90034-5 .

Cabrelli LC, Grillo FW, Carneiro AAO, Pavan TZ. Copolymer-in-oil tissue-mimicking material with tunable acoustic properties. IEEE International Ultrasonics Symposium (IUS). 2016:1–4. https://doi.org/10.1109/ULTSYM.2016.7728859 .

Oudry J, Bastard C, Miette V, Willinger R, Sandrin L. Copolymer-in-oil phantom materials for elastography. Ultrasound Med Biol. 2009;35(7):1185–97. https://doi.org/10.1016/j.ultrasmedbio.2009.01.012 .

D’Souza WD, Madsen EL, Unal O, Vigen KK, Frank GR, Thomadsen BR. Tissue mimicking materials for a multi-imaging modality prostate phantom. Med Phys. 2001;28(4):688–700. https://doi.org/10.1118/1.1354998 .

Cabrelli LC, Pelissari PIBGB, Deana AM, Carneiro AAO, Pavan TZ. Stable phantom materials for ultrasound and optical imaging. Phys Med Biol. 2017;62(2):432–47. https://doi.org/10.1088/1361-6560/62/2/432 .

Choi J-Y, Choi J-H, Kim N-K, et al. Analysis of errors in medical rapid prototyping models. Int J Oral Maxillofac Surg. 2002;31(1):23–32. https://doi.org/10.1054/ijom.2000.0135 .

Cooper J, Taqueti V. A Brief history of the development of mannequin simulators for clinical education and training. Qual Saf Health Care. 2004;13(Suppl 1):i11–8. https://doi.org/10.1136/qshc.2004.009886 .

Filho FVG, Coelho G, Cavalheiro S, Lyra M, Zymberg ST. Quality assessment of a new surgical simulator for neuroendoscopic training. Neurosurg Focus. 2011;30(4):E17. https://doi.org/10.3171/2011.2.FOCUS10321 .

Rocco CD, Tamburrini G. Sturge–Weber syndrome. Childs Nerv Syst. 2006;22(8):909. https://doi.org/10.1007/s00381-006-0143-2 .

Amorim P, Moraes T, Silva J, InVesalius PH. An interactive rendering framework for health care support. In: Advances in Visual Computing. Cham: Springer; 2015. p. 45–54. https://doi.org/10.1007/978-3-319-27857-5_5 .

Tsai A, Barnewolt CE, Prahbu SP, et al. Creation and validation of a simulator for neonatal brain ultrasonography. A Pilot Study Acad Radiol. 2017;24(1):76–83. https://doi.org/10.1016/j.acra.2016.09.007 .

Pieper S, Halle M, Kikinis R. 3D Slicer. In: 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), vol. 1; 2004. p. 632–5. https://doi.org/10.1109/ISBI.2004.1398617 .

Amorim P, Moraes T, Silva J, Pedrini H. InVesalius: An interactive rendering framework for health care support. In: Bebis G, Boyle R, Parvin B, Koracin D, Pavlidis I, Feris R, et al., editors. Adv. Vis. Comput. 11th Int. Symp. ISVC 2015, Las Vegas, NV, USA, December 14-16, 2015, Proceedings, Part I, Cham, Switzerland: Springer International Publishing; 2015. p. 45–54. https://doi.org/10.1007/978-3-319-27857-5_5 .

Seitz H, Tille C, Irsen S, Bermes G, Sader R, Zeilhofer H-F. Rapid prototyping models for surgical planning with hard and soft tissue representation. Int Congr Ser. 2004;1268:567–72. https://doi.org/10.1016/j.ics.2004.03.139 .

Tsuji M, Noguchi N, Ihara K, Yamashita Y, Shikimori M, Goto M. Fabrication of a maxillofacial prosthesis using a computer-aided design and manufacturing system. J Prosthodont. 2004;13(3):179–83. https://doi.org/10.1111/j.1532-849X.2004.04029.x .

Randazzo M, Pisapia JM, Singh N, Thawani JP. 3D printing in neurosurgery: a systematic review. Surg Neurol Int. 2016;7(Suppl 33):S801–9. https://doi.org/10.4103/2152-7806.194059 .

Khan IS, Kelly PD, Singer RJ. Prototyping of cerebral vasculature physical models. Surgical Neurology International. 2014;5:11. https://doi.org/10.4103/2152-7806.125858 .

KONDO K, NEMOTO M, MASUDA H, et al. Anatomical reproducibility of a head model molded by a three-dimensional printer. Neurol Med Chir (Tokyo). 2015;55(7):592–8. https://doi.org/10.2176/nmc.oa.2014-0436 .

Weinstock P, Rehder R, Prabhu SP, Forbes PW, Roussin CJ, Cohen AR. Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects. J Neurosurg Pediatr. 2017:1–9. https://doi.org/10.3171/2017.1.PEDS16568 .

Salmi M, Paloheimo K-S, Tuomi J, Wolff J, Mäkitie A. Accuracy of medical models made by additive manufacturing (rapid manufacturing). J Cranio-Maxillofac Surg. 2013;41(7):603–9. https://doi.org/10.1016/j.jcms.2012.11.041 .

Cohen FL, Mendelsohn D, Bernstein M. Wrong-site craniotomy: analysis of 35 cases and systems for prevention. J Neurosurg. 2010;113(3):461–73. https://doi.org/10.3171/2009.10.JNS091282 .

Ramsay CR, Grant AM, Wallace SA, Garthwaite PH, Monk AF, Russell IT. Assessment of the learning curve in health technologies. A systematic review. Int J Technol Assess Health Care. 2000;16(4):1095–108.

Kuehn B, Mularski S, Schoenherr S, et al. Sensor-based neuronavigation: evaluation of a large continuous patient population. Clin Neurol Neurosurg. 2008;110(10):1012–9. https://doi.org/10.1016/j.clineuro.2008.06.017 .