Pathwise no-arbitrage in a class of Delta hedging strategies

Alexander Schied1, Iryna Voloshchenko1
1Department of Mathematics, University of Mannheim, Mannheim, 68131, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Acciaio, B, Beiglböck, M, Penkner, F, Schachermayer, W: A model-free version of the fundamental theorem of asset pricing and the super-replication theorem. Math. Finance. 26(2), 233–251 (2016). doi: 10.1111/mafi.12060 .

Alvarez, A, Ferrando, S, Olivares, P: Arbitrage and hedging in a non probabilistic framework. Math. Financ. Econ. 7(1), 1–28 (2013). doi: 10.1007/s11579-012-0074-5 .

Beiglböck, M, Cox, AM, Huesmann, M, Perkowski, N, Prömel, DJ: Pathwise super-replication via Vovk’s outer measure (2015). http://arxiv.org/abs/1504.03644 .

Bender, C, Sottinen, T, Valkeila, E: Pricing by hedging and no-arbitrage beyond semimartingales. Finance Stoch. 12(4), 441–468 (2008). doi: 10.1007/s00780-008-0074-8 .

Biagini, S, Bouchard, B, Kardaras, C, Nutz, M: Robust fundamental theorem for continuous processes. Mathematical Finance (2015). doi: 10.1111/mafi.12110 .

Bick, A, Willinger, W: Dynamic spanning without probabilities. Stochastic Process. Appl. 50(2), 349–374 (1994). doi: 10.1016/0304-4149(94)90128-7 .

Bouchard, B, Nutz, M: Arbitrage and duality in nondominated discrete-time models. Ann. Appl. Probab. 25(2), 823–859 (2015). doi: 10.1214/14-AAP1011 .

Bühler, H: Pricing with a discrete smile (2015). SSRN preprint 2642630 http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2642630 .

Cont, R, Fournié, D-A: Change of variable formulas for non-anticipative functionals on path space. J. Funct. Anal. 259(4), 1043–1072 (2010). doi: 10.1016/j.jfa.2010.04.017 .

Davis, M, Obłój, J, Raval, V: Arbitrage bounds for prices of weighted variance swaps. Math. Finance. 24(4), 821–854 (2014). doi: 10.1111/mafi.12021 .

Dudley, RM: Wiener functionals as Itô integrals. Ann. Probability. 5(1), 140–141 (1977).

Dupire, B: Pricing and hedging with smiles. In: Mathematics of Derivative Securities (Cambridge, 1995), Publ. Newton Inst, pp. 103–111. Cambridge Univ. Press, Cambridge (1997).

Dupire, B: Functional Itô calculus. Bloomberg Portfolio Research Paper (2009).

El Karoui, N, Jeanblanc-Picqué, M, Shreve, SE: Robustness of the Black and Scholes formula. Math. Finance. 8(2), 93–126 (1998). doi: 10.1111/1467-9965.00047 .

Föllmer, H: Calcul d’Itô sans probabilités. In: Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980), Lecture Notes in Math, pp. 143–150. Springer, Berlin (1981).

Föllmer, H: Probabilistic aspects of financial risk. In: European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math, pp. 21–36. Birkhäuser, Basel (2001).

Föllmer, H, Schied, A: Stochastic Finance. An Introduction in Discrete Time. 3rd ed. Walter de Gruyter & Co., Berlin (2011).

Freedman, D: Brownian Motion and Diffusion. 2nd ed. Springer, New York (1983).

Hobson, D: The Skorokhod embedding problem and model-independent bounds for option prices. In: Paris-Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Math, pp. 267–318. Springer (2011), doi: 10.1007/978-3-642-14660-2_4 http://dx.doi.org/10.1007/978-3-642-14660-2_4 .

Hobson, DG: Robust hedging of the lookback option. Finance Stoch. 2(4), 329–347 (1998).

Janson, S, Tysk, J: Preservation of convexity of solutions to parabolic equations. J. Differential Equations. 206(1), 182–226 (2004). doi: 10.1016/j.jde.2004.07.016 .

Jeanblanc, M, Yor, M, Chesney, M: Mathematical Methods for Financial Markets. Springer Finance. Springer (2009).

Ji, S, Yang, S: Classical solutions of path-dependent PDEs and functional forward-backward stochastic systems. Math. Probl. Eng, 423101–11 (2013). downloads.hindawi.com/journals/mpe/2013/423101.pdf .

Lyons, TJ: Uncertain volatility and the risk-free synthesis of derivatives. Appl. Math. Finance. 2(2), 117–133 (1995).

Peng, S, Wang, F: BSDE, path-dependent PDE and nonlinear Feynman-Kac formula. F. Sci. China Math. 59, 19 (2016). doi: 10.1007/s11425-015-5086-1 .

Riedel, F: Financial economics without probabilistic prior assumptions. Decisions Econ. Finan. 38, 75–91 (2015). doi: 10.1007/s10203-014-0159-0 .

Schied, A: Model-free CPPI. J. Econom. Dynam. Control. 40, 84–94 (2014). doi: 10.1016/j.jedc.2013.12.010 .

Schied, A: On a class of generalized Takagi functions with linear pathwise quadratic variation. J. Math. Anal. Appl. 433, 974–990 (2016).

Schied, A, Stadje, M: Robustness of delta hedging for path-dependent options in local volatility models. J. Appl. Probab. 44(4), 865–879 (2007). doi: 10.1239/jap/1197908810 .

Schied, A, Voloshchenko, I: The associativity rule in pathwise functional Itô calculus (2016). http://arxiv.org/abs/1605.08861 .

Schied, A, Speiser, L, Voloshchenko, I: Model-free portfolio theory and its functional master formula (2016). arXiv preprint 1606.03325.

Sondermann, D: Introduction to Stochastic Calculus for Finance. Lecture Notes in Economics and Mathematical Systems, Vol. 579. Springer, Berlin (2006).

Stroock, DW, Varadhan, SRS: Diffusion processes with continuous coefficients. Comm. Pure Appl. Math. 22, 345–400479530 (1969).

Stroock, DW, Varadhan, SRS: On the support of diffusion processes with applications to the strong maximum principle. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory, pp. 333–359. Univ. California Press, Berkeley, Calif (1972).

Vovk, V: Rough paths in idealized financial markets. Lith. Math. J. 51(2), 274–285 (2011). doi: 10.1007/s10986-011-9125-5 .

Vovk, V: Continuous-time trading and the emergence of probability. Finance Stoch. 16(4), 561–609 (2012). doi: 10.1007/s00780-012-0180-5 .

Vovk, V: Itô calculus without probability in idealized financial markets. Lith. Math. J. 55(2), 270–290 (2015). doi: 10.1007/s10986-015-9280-1 .

Widder, DV: The Heat Equation. Pure and Applied Mathematics, Vol. 67, pp. 267, New York and London (1975).