Pathwise Numerical Approximations of SPDEs with Additive Noise under Non-global Lipschitz Coefficients

Arnulf Jentzen1
1Institute of Mathematics, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

Grecksch, W., Kloeden, P.E.: Time-discretised Galerkin approximation of parabolic stochastic PDEs. Bull. Aust. Math. Soc. 54(1), 79–85 (1996)

Gyöngy, I., Nualart, D.: Implicit scheme for quasi-linear parabolic partial differential equations perturbed by space-time white noise. Stoch. Process. their Appl. 58(1), 57–72 (1995)

Gyöngy, I., Nualart, D.: Implicit scheme for stochastic parabolic partial differential equations driven by space-time white noise. Potential Anal. 7(4), 725–757 (1997)

Gyöngy, I.: A note on Euler’s approximations. Potential Anal. 8(3), 205–216 (1998)

Gyöngy, I.: Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise II. Potential Anal. 11(1), 1–37 (1999)

Gyöngy, I., Krylov, N.: On the splitting-up method and stochastic partial differential equations. Ann. Probab. 31(2), 564–591 (2003)

Gyöngy, I., Millet, A.: On discretization schemes for stochastic evolution equations. Potential Anal. 23(2), 99–134 (2005)

Gyöngy, I., Millet, A.: Rate of convergence of space time approximations for stochastic evolution equations. Potential Anal. 30(1), 29–64 (2009)

Hausenblas, E.: Numerical analysis of semilinear stochastic evolution equations in Banach spaces. J. Comput. Appl. Math. 147(2), 485–516 (2002)

Hausenblas, E.: Approximation for semilinear stochastic evolution equations. Potential Anal. 18(2), 141–186 (2003)

Hutzenthaler, M., Jentzen, A.: Non-globally Lipschitz Counterexamples for the stochastic Euler scheme. arXiv:0905.0273v1 (2009)

Jentzen, A., Kloeden, P.E., Neuenkirch, A.: Pathwise approximation of stochastic differential equations on domains: higher order convergence rates without global Lipschitz coefficients. Numer. Math. 112(1), 41–64 (2009)

Jentzen, A., Neuenkirch, A.: A random Euler scheme for Carathéodory differential equations. J. Comput. Appl. Math. 224(1), 346–359 (2009)

Jentzen, A., Kloeden, P.E.: Overcoming the order barrier in the numerical approximation of SPDEs with additive space-time noise. Proc. R. Soc. A 465(2102), 649–667 (2009)

Kloeden, P.E., Shott, S.: Linear-implicit strong schemes for Itô-Galerkin approximation of stochastic PDEs. J. Appl. Math. Stoch. Anal. 14(1), 47–53 (2001)

Lord, G.J., Rougemont, J.: A numerical scheme for stochastic PDEs with Gevrey regularity. IMA J. Numer. Anal. 54(4), 587–604 (2004)

Lord, G.J., Shardlow, T.: Post processing for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 45(2), 870–889 (2007)

Mishura, Y.S., Shevchenko, G.M.: Approximation schemes for stochastic differential equations in a Hilbert space. Theory Probab. Appl. 51(3), 442–458 (2007)

Müller-Gronbach, T., Ritter, K., Wagner, T.: Optimal pointwise approximation of a linear stochastic heat equation with additive space-time noise. In: Monte Carlo and Quasi Monte Carlo Methods 2006, pp. 577–589 (2007)

Müller-Gronbach, T., Ritter, K.: Lower bounds and nonuniform time discretization for approximation of stochastic heat equations. Found. Comput. Math. 7(2), 135–181 (2007)

Müller-Gronbach, T., Ritter, K.: An implicit Euler scheme with non-uniform time discretization for heat equations with multiplicative noise. BIT 47(2), 393–418 (2007)

Müller-Gronbach, T., Ritter, K., Wagner, T.: Optimal pointwise approximation of infinite-dimensional Ornstein-Uhlenbeck processes. Stoch. Dyn. 8(3), 519–541 (2008)

Pettersson, R., Signahl, M.: Numerical approximation for a white noise driven SPDE with locally bounded drift. Potential Anal. 22(4), 375–393 (2005)

Prévot, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Springer, Berlin (2007)

Roman, L.J.: On numerical solutions of stochastic differential equations. PhD Thesis, University of Minnesota, Minnesota (2009)

Sell, G.R., You, Y.: Dynamics of Evolutionary Equations. Springer, New York (2002)

Shardlow, T.: Numerical methods for stochastic parabolic PDEs. Numer. Funct. Anal. Optim. 20(1–2), 121–145 (1999)

Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)

Yan, Y.: Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43(4), 1363–1384 (2005)

Yoo, H.: Semi-discretization of stochastic partial differential equations on ℝ1 by a finite-difference method. Math. Comput. 69(230), 653–666 (1999)