Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update

European Respiratory Journal - Tập 53 Số 1 - Trang 1801900 - 2019
Anton Vonk Noordegraaf1, Kelly Chin2, François Haddad3, Paul M. Hassoun4, Anna R. Hemnes5, Susan R. Hopkins6, Steven M. Kawut7, David Langleben8, Joost Lumens9,10, Robert Naeije11,12
1Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
2Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern, Dallas, TX, USA
3Division of Cardiovascular Medicine, Stanford University and Stanford Cardiovascular Institute, Palo Alto, CA, USA
4Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
5Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
6Dept. of Medicine, University of California, San Diego, La Jolla, CA, USA
7Penn Cardiovascular Institute, Dept of Medicine, and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
8Center for Pulmonary Vascular Disease, Cardiology Division, Jewish General Hospital and McGill University, Montreal, QC, Canada
9Maastricht University Medical Center, CARIM – School for Cardiovascular Diseases, Maastricht, The Netherlands
10Université de Bordeaux, LIRYC (L'Institut de Rythmologie et Modélisation Cardiaque), Bordeaux, France
11Dept. of Cardiology, Erasme University Hospital, Brussels, Belgium
12Laboratory of Cardiorespiratory Exercise Physiology, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium

Tóm tắt

The function of the right ventricle determines the fate of patients with pulmonary hypertension. Since right heart failure is the consequence of increased afterload, a full physiological description of the cardiopulmonary unit consisting of both the right ventricle and pulmonary vascular system is required to interpret clinical data correctly. Here, we provide such a description of the unit and its components, including the functional interactions between the right ventricle and its load. This physiological description is used to provide a framework for the interpretation of right heart catheterisation data as well as imaging data of the right ventricle obtained by echocardiography or magnetic resonance imaging. Finally, an update is provided on the latest insights in the pathobiology of right ventricular failure, including key pathways of molecular adaptation of the pressure overloaded right ventricle. Based on these outcomes, future directions for research are proposed.

Từ khóa


Tài liệu tham khảo

10.1093/eurheartj/ehv317

10.1016/j.jacc.2013.10.027

10.1164/rccm.201412-2271OC

10.1161/CIRCULATIONAHA.113.001375

Naeije, 2017, The overloaded right heart and ventricular interdependence, Cardiovasc Res, 113, 1474, 10.1093/cvr/cvx160

10.1152/ajpheart.00596.2016

10.1111/echo.12468

10.1093/cvr/cvs251

10.1016/j.jacc.2007.10.041

10.1016/j.jacc.2014.04.031

10.1016/j.jacc.2016.10.047

10.1161/01.RES.32.3.314

10.1152/ajpheart.01023.2002

10.1161/01.RES.44.3.309

Westerhof N , Stergiopulos N , Noble MI , et al. Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education. 3rd Edn. New York, Springer-Nature, 2018.

Spruijt, 2014, Assessment of right ventricular responses to therapy in pulmonary hypertension, Drug Discov Today, 19, 1246, 10.1016/j.drudis.2014.03.008

10.1183/09031936.00081314

10.7326/0003-4819-115-5-343

10.1183/09031936.00160712

10.1161/CIRCULATIONAHA.113.001873

10.1183/09031936.00156714

10.1136/heartjnl-2014-306142

Chemla, 1996, Matching dicrotic notch and mean pulmonary artery pressures: implications for effective arterial elastance, Am J Physiol, 271, H1287

Tello, 2018, More on single-beat estimation of right ventriculo-arterial coupling in pulmonary arterial hypertension, Am J Respir Crit Care Med, 2198, 816, 10.1164/rccm.201802-0283LE

10.1152/japplphysiol.00845.2001

10.1006/mvre.1997.2031

Dupuis, 1992, Pulmonary angiotensin-converting enzyme substrate hydrolysis during exercise, J Appl Physiol, 72, 1868, 10.1152/jappl.1992.72.5.1868

10.1063/1.362819

Toivonen, 1991, Effects of blood flow on lung ACE kinetics: evidence for microvascular recruitment, J Appl Physiol, 71, 2244, 10.1152/jappl.1991.71.6.2244

Wagner, 1986, Vertical gradient of pulmonary capillary transit times, J Appl Physiol, 61, 1270, 10.1152/jappl.1986.61.4.1270

10.1002/art.23405

10.1152/japplphysiol.00433.2012

10.1152/japplphysiol.01354.2013

Langleben, 2015, Acute vasodilator responsiveness and microvascular recruitment in idiopathic pulmonary arterial hypertension, Ann Intern Med, 162, 154, 10.7326/M14-1402

Linehan, 1992, A simple distensible vessel model for interpreting pulmonary vascular pressure–flow curves, J Appl Physiol, 73, 987, 10.1152/jappl.1992.73.3.987

10.1152/ajplung.00162.2004

10.1164/rccm.201211-2090CI

Stergiopulos, 1999, Use of pulse pressure method for estimating total arterial compliance in vivo, Am J Physiol, 276, H424

Chemla, 1998, Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans, Am J Physiol, 274, H500

Segers, 1999, Pulmonary arterial compliance in dogs and pigs: the three-element windkessel model revisited, Am J Physiol, 277, H725

10.1152/ajpheart.00336.2006

10.1152/ajpheart.00694.2009

10.1183/09059180.00002210

10.1161/01.RES.29.1.40

10.1093/eurheartj/ehn103

10.1378/chest.10-0348

Metkus, 2016, Heart rate dependence of the pulmonary resistance × compliance (RC) time and impact on right ventricular load, PLoS One, 11, e0166463, 10.1371/journal.pone.0166463

10.1161/CIRCULATIONAHA.111.051540

Ghio, 2017, Prognostic relevance of pulmonary arterial compliance after therapy initiation or escalation in patients with pulmonary arterial hypertension, Int J Cardiol, 230, 53, 10.1016/j.ijcard.2016.12.099

10.1016/j.echo.2006.03.008

10.1016/j.ijcard.2012.12.080

10.1164/rccm.200912-1820OC

10.1378/chest.13-1510

10.1016/j.jchf.2015.01.013

10.1378/chest.126.4.1313

Amsallem, 2016, Addressing the controversy of estimating pulmonary arterial pressure by echocardiography, J Am Soc Echocardiogr, 29, 93, 10.1016/j.echo.2015.11.001

10.14814/phy2.12910

10.1016/j.ijcard.2013.07.005

10.1093/eurheartj/ehq152

10.1016/j.ijcard.2016.05.015

10.1016/j.jacc.2011.06.068

10.1016/j.ijcard.2016.08.138

10.1161/01.CIR.0000143138.02493.DD

10.1161/CIRCHEARTFAILURE.111.964494

10.1017/S1047951105001848

10.1161/CIRCHEARTFAILURE.112.000008

10.1152/japplphysiol.01123.2013

10.1161/CIRCULATIONAHA.116.022082

10.1183/13993003.00578-2017

10.1183/13993003.01032-2015

10.1161/CIRCULATIONAHA.112.000667

10.1183/09031936.00021915

10.1183/13993003.01307-2015

10.1161/CIRCHEARTFAILURE.109.930701

10.1161/CIRCHEARTFAILURE.112.967919

10.1161/CIRCHEARTFAILURE.113.000983

10.1161/CIRCULATIONAHA.112.111302

10.1183/09031936.00091212

10.1161/CIRCHEARTFAILURE.113.000468

D'Alto, 2017, Clinical relevance of fluid challenge in patients evaluated for pulmonary hypertension, Chest, 151, 119, 10.1016/j.chest.2016.08.1439

10.1161/CIRCHEARTFAILURE.114.001731

10.1161/CIRCULATIONAHA.114.006972

10.1161/CIRCIMAGING.113.000640

10.1161/CIRCIMAGING.116.005771

10.1055/s-0033-1355444

10.1161/CIRCULATIONAHA.115.020696

10.1161/CIRCULATIONAHA.115.019351

10.1164/rccm.201507-1444OC

10.1164/rccm.201306-1086OC

10.1161/CIRCULATIONAHA.115.016382

10.1161/CIRCULATIONAHA.109.898122

10.1378/chest.13-1291

10.1152/ajplung.00006.2015

10.1152/ajplung.00169.2015

10.4103/2045-8932.109960

10.1161/CIRCHEARTFAILURE.115.002636

10.1161/JAHA.117.006195

Meng, 2017, Development of a mouse model of metabolic syndrome, pulmonary hypertension, and heart failure with preserved ejection fraction, Am J Respir Cell Mol Biol, 56, 497, 10.1165/rcmb.2016-0177OC

10.1161/CIRCULATIONAHA.117.033147

Westerhof, 2017, Treatment strategies for the right heart in pulmonary hypertension, Cardiovasc Res, 113, 1465, 10.1093/cvr/cvx148