Pathophysiology of primary open-angle glaucoma from a neuroinflammatory and neurotoxicity perspective: a review of the literature
Tóm tắt
Từ khóa
Tài liệu tham khảo
Osborne NN, Melena J, Chidlow G, Wood JP (2001) A hypothesis to explain ganglion cell death caused by vascular insults at the optic nerve head: possible implication for the treatment of glaucoma. Br J Ophthalmol 85(10):1252–1259
Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M, Early Manifest Glaucoma Trial G (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120(10):1268–1279
Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S (2017) Glaucoma. Lancet. https://doi.org/10.1016/S0140-6736(17)31469-1
Casson RJ (2006) Possible role of excitotoxicity in the pathogenesis of glaucoma. Clin Exp Ophthalmol 34(1):54–63. https://doi.org/10.1111/j.1442-9071.2006.01146.x
Anderson DR, Drance SM, Schulzer M, Collaborative Normal-Tension Glaucoma Study G (2003) Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am J Ophthalmol 136(5):820–829
Quigley HA, McKinnon SJ, Zack DJ, Pease ME, Kerrigan-Baumrind LA, Kerrigan DF, Mitchell RS (2000) Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Investig Ophthalmol Vis Sci 41(11):3460–3466
Abe RY, Gracitelli CP, Diniz-Filho A, Tatham AJ, Medeiros FA (2015) Lamina cribrosa in glaucoma: diagnosis and monitoring. Curr Ophthalmol Rep 3(2):74–84. https://doi.org/10.1007/s40135-015-0067-7
Anderson DR, Hendrickson A (1974) Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Investig Ophthalmol 13(10):771–783
Bellezza AJ, Rintalan CJ, Thompson HW, Downs JC, Hart RT, Burgoyne CF (2003) Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Investig Ophthalmol Vis Sci 44(2):623–637
Quigley HA, Addicks EM, Green WR, Maumenee AE (1981) Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol 99(4):635–649
Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR (1983) Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol 95(5):673–691
Yang H, Downs JC, Girkin C, Sakata L, Bellezza A, Thompson H, Burgoyne CF (2007) 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness. Investig Ophthalmol Vis Sci 48(10):4597–4607. https://doi.org/10.1167/iovs.07-0349
Ozcan AA, Ozdemir N, Canataroglu A (2004) The aqueous levels of TGF-beta2 in patients with glaucoma. Int Ophthalmol 25(1):19–22
Naskar R, Dreyer EB (2001) New horizons in neuroprotection. Surv Ophthalmol 45(suppl 3):S250–S255 (discussion S273–S256)
Morrison JC, Moore CG, Deppmeier LM, Gold BG, Meshul CK, Johnson EC (1997) A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res 64(1):85–96. https://doi.org/10.1006/exer.1996.0184
Garcia-Valenzuela E, Shareef S, Walsh J, Sharma SC (1995) Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res 61(1):33–44
Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A (2012) The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 31(2):152–181. https://doi.org/10.1016/j.preteyeres.2011.11.002
Klein BE, Klein R, Sponsel WE, Franke T, Cantor LB, Martone J, Menage MJ (1992) Prevalence of glaucoma. The beaver dam eye study. Ophthalmology 99(10):1499–1504
Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP, Stefansson E (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21(4):359–393
Bui BV, Edmunds B, Cioffi GA, Fortune B (2005) The gradient of retinal functional changes during acute intraocular pressure elevation. Investig Ophthalmol Vis Sci 46(1):202–213. https://doi.org/10.1167/iovs.04-0421
Holcombe DJ, Lengefeld N, Gole GA, Barnett NL (2008) The effects of acute intraocular pressure elevation on rat retinal glutamate transport. Acta Ophthalmol 86(4):408–414. https://doi.org/10.1111/j.1600-0420.2007.01052.x
Yu DY, Cringle SJ, Balaratnasingam C, Morgan WH, Yu PK, Su EN (2013) Retinal ganglion cells: energetics, compartmentation, axonal transport, cytoskeletons and vulnerability. Prog Retin Eye Res 36:217–246. https://doi.org/10.1016/j.preteyeres.2013.07.001
Yu DY, Cringle SJ, Alder VA, Su EN (1994) Intraretinal oxygen distribution in rats as a function of systemic blood pressure. Am J Physiol 267(6 Pt 2):H2498–H2507
Chang EE, Goldberg JL (2012) Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology 119(5):979–986. https://doi.org/10.1016/j.ophtha.2011.11.003
Bereiter-Hahn J, Voth M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27(3):198–219. https://doi.org/10.1002/jemt.1070270303
Yu DY, Cringle SJ (2001) Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 20(2):175–208
Andrews RM, Griffiths PG, Johnson MA, Turnbull DM (1999) Histochemical localisation of mitochondrial enzyme activity in human optic nerve and retina. Br J Ophthalmol 83(2):231–235
Delyfer MN, Forster V, Neveux N, Picaud S, Leveillard T, Sahel JA (2005) Evidence for glutamate-mediated excitotoxic mechanisms during photoreceptor degeneration in the rd1 mouse retina. Mol Vis 11:688–696
Hernandez MR (2000) The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res 19(3):297–321
Varela HJ, Hernandez MR (1997) Astrocyte responses in human optic nerve head with primary open-angle glaucoma. J Glaucoma 6(5):303–313
Plange N, Bienert M, Remky A, Arend KO (2012) Optic disc fluorescein leakage and intraocular pressure in primary open-angle glaucoma. Curr Eye Res 37(6):508–512. https://doi.org/10.3109/02713683.2012.665122
Yao H, Wang T, Deng J, Liu D, Li X, Deng J (2014) The development of blood-retinal barrier during the interaction of astrocytes with vascular wall cells. Neural Regen Res 9(10):1047–1054. https://doi.org/10.4103/1673-5374.133169
Chong RS, Martin KR (2015) Glial cell interactions and glaucoma. Curr Opin Ophthalmol 26(2):73–77. https://doi.org/10.1097/ICU.0000000000000125
Newman E, Reichenbach A (1996) The Muller cell: a functional element of the retina. Trends Neurosci 19(8):307–312
Simo R, Villarroel M, Corraliza L, Hernandez C, Garcia-Ramirez M (2010) The retinal pigment epithelium: something more than a constituent of the blood-retinal barrier—implications for the pathogenesis of diabetic retinopathy. J Biomed Biotechnol 2010:190724. https://doi.org/10.1155/2010/190724
Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85(3):845–881. https://doi.org/10.1152/physrev.00021.2004
Gugleta K, Orgul S, Hasler PW, Picornell T, Gherghel D, Flammer J (2003) Choroidal vascular reaction to hand-grip stress in subjects with vasospasm and its relevance in glaucoma. Investig Ophthalmol Vis Sci 44(4):1573–1580
Chung HS, Harris A, Evans DW, Kagemann L, Garzozi HJ, Martin B (1999) Vascular aspects in the pathophysiology of glaucomatous optic neuropathy. Surv Ophthalmol 43(Suppl 1):S43–S50
Balaratnasingam C, Ye L, Morgan WH, Bass L, Cringle SJ, Yu DY (2009) Protective role of endothelial nitric oxide synthase following pressure-induced insult to the optic nerve. Brain Res 1263:155–164. https://doi.org/10.1016/j.brainres.2009.01.031
Kawai Y, Yokoyama Y, Kaidoh M, Ohhashi T (2010) Shear stress-induced ATP-mediated endothelial constitutive nitric oxide synthase expression in human lymphatic endothelial cells. Am J Physiol Cell Physiol 298(3):C647–C655. https://doi.org/10.1152/ajpcell.00249.2009
Neufeld AH, Hernandez MR, Gonzalez M (1997) Nitric oxide synthase in the human glaucomatous optic nerve head. Arch Ophthalmol 115(4):497–503
Liu B, Neufeld AH (2000) Expression of nitric oxide synthase-2 (NOS-2) in reactive astrocytes of the human glaucomatous optic nerve head. Glia 30(2):178–186
Kaufman PL (1999) Nitric-oxide synthase and neurodegeneration/neuroprotection. Proc Natl Acad Sci USA 96(17):9455–9456
Osborne NN (2010) Mitochondria: their role in ganglion cell death and survival in primary open angle glaucoma. Exp Eye Res 90(6):750–757. https://doi.org/10.1016/j.exer.2010.03.008
Kobayashi M, Kuroiwa T, Shimokawa R, Okeda R, Tokoro T (2000) Nitric oxide synthase expression in ischemic rat retinas. Jpn J Ophthalmol 44(3):235–244
Adalbert R, Coleman MP (2013) Review: axon pathology in age-related neurodegenerative disorders. Neuropathol Appl Neurobiol 39(2):90–108. https://doi.org/10.1111/j.1365-2990.2012.01308.x
Munemasa Y, Kitaoka Y (2012) Molecular mechanisms of retinal ganglion cell degeneration in glaucoma and future prospects for cell body and axonal protection. Front Cell Neurosci 6:60. https://doi.org/10.3389/fncel.2012.00060
Nickells RW, Howell GR, Soto I, John SW (2012) Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu Rev Neurosci 35:153–179. https://doi.org/10.1146/annurev.neuro.051508.135728
Ousman SS, Kubes P (2012) Immune surveillance in the central nervous system. Nat Neurosci 15(8):1096–1101. https://doi.org/10.1038/nn.3161
Chi W, Li F, Chen H, Wang Y, Zhu Y, Yang X, Zhu J, Wu F, Ouyang H, Ge J, Weinreb RN, Zhang K, Zhuo Y (2014) Caspase-8 promotes NLRP1/NLRP3 inflammasome activation and IL-1beta production in acute glaucoma. Proc Natl Acad Sci USA 111(30):11181–11186. https://doi.org/10.1073/pnas.1402819111
Schroder K, Tschopp J (2010) The inflammasomes. Cell 140(6):821–832. https://doi.org/10.1016/j.cell.2010.01.040
Crowder RN, El-Deiry WS (2012) Caspase-8 regulation of TRAIL-mediated cell death. Exp Oncol 34(3):160–164
Innocenti B, Parpura V, Haydon PG (2000) Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J Neurosci Off J Soc Neurosci 20(5):1800–1808
Voloboueva LA, Suh SW, Swanson RA, Giffard RG (2007) Inhibition of mitochondrial function in astrocytes: implications for neuroprotection. J Neurochem 102(4):1383–1394. https://doi.org/10.1111/j.1471-4159.2007.4634.x
Martins-Ferreira H, Nedergaard M, Nicholson C (2000) Perspectives on spreading depression. Brain Res Brain Res Rev 32(1):215–234
Singh M, Savitz SI, Hoque R, Gupta G, Roth S, Rosenbaum PS, Rosenbaum DM (2001) Cell-specific caspase expression by different neuronal phenotypes in transient retinal ischemia. J Neurochem 77(2):466–475
Katai N, Yoshimura N (1999) Apoptotic retinal neuronal death by ischemia-reperfusion is executed by two distinct caspase family proteases. Investig Ophthalmol Vis Sci 40(11):2697–2705
Sumioka K, Shirai Y, Sakai N, Hashimoto T, Tanaka C, Yamamoto M, Takahashi M, Ono Y, Saito N (2000) Induction of a 55-kDa PKN cleavage product by ischemia/reperfusion model in the rat retina. Investig Ophthalmol Vis Sci 41(1):29–35
Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Muller cells in the healthy and diseased retina. Prog Retin Eye Res 25(4):397–424. https://doi.org/10.1016/j.preteyeres.2006.05.003
Bringmann A, Wiedemann P (2012) Muller glial cells in retinal disease. Ophthalmologica 227(1):1–19. https://doi.org/10.1159/000328979
Stone J, Itin A, Alon T, Pe’er J, Gnessin H, Chan-Ling T, Keshet E (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci Off J Soc Neurosci 15(7 Pt 1):4738–4747
Balaratnasingam C, Morgan WH, Bass L, Ye L, McKnight C, Cringle SJ, Yu DY (2008) Elevated pressure induced astrocyte damage in the optic nerve. Brain Res 1244:142–154. https://doi.org/10.1016/j.brainres.2008.09.044
Prasanna G, Krishnamoorthy R, Yorio T (2011) Endothelin, astrocytes and glaucoma. Exp Eye Res 93(2):170–177. https://doi.org/10.1016/j.exer.2010.09.006
Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, Osborne NN, Reichenbach A (2009) Cellular signaling and factors involved in Muller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 28(6):423–451. https://doi.org/10.1016/j.preteyeres.2009.07.001
Bringmann A, Reichenbach A, Wiedemann P (2004) Pathomechanisms of cystoid macular edema. Ophthalmic Res 36(5):241–249. https://doi.org/10.1159/000081203
Francke M, Pannicke T, Biedermann B, Faude F, Wiedemann P, Reichenbach A, Reichelt W (1997) Loss of inwardly rectifying potassium currents by human retinal glial cells in diseases of the eye. Glia 20(3):210–218
Lewis GP, Fisher SK (2003) Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol 230:263–290
Lu YB, Franze K, Seifert G, Steinhauser C, Kirchhoff F, Wolburg H, Guck J, Janmey P, Wei EQ, Kas J, Reichenbach A (2006) Viscoelastic properties of individual glial cells and neurons in the CNS. Proc Natl Acad Sci USA 103(47):17759–17764. https://doi.org/10.1073/pnas.0606150103
Ambati J, Chalam KV, Chawla DK, D’Angio CT, Guillet EG, Rose SJ, Vanderlinde RE, Ambati BK (1997) Elevated gamma-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol 115(9):1161–1166
Naskar R, Vorwerk CK, Dreyer EB (2000) Concurrent downregulation of a glutamate transporter and receptor in glaucoma. Investig Ophthalmol Vis Sci 41(7):1940–1944
Lucas DR, Newhouse JP (1957) The toxic effect of sodium l-glutamate on the inner layers of the retina. AMA Arch Ophthalmol 58(2):193–201
Asensio Sanchez VM, Corral Azor A, Aguirre Aragon B, De Paz Garcia M (2002) Amino acid concentrations in the vitreous body in control subjects. Archivos de la Sociedad Espanola de Oftalmologia 77(11):611–616
Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11(10):465–469
Huang W, Fileta J, Rawe I, Qu J, Grosskreutz CL (2010) Calpain activation in experimental glaucoma. Investig Ophthalmol Vis Sci 51(6):3049–3054. https://doi.org/10.1167/iovs.09-4364
Manabe S, Lipton SA (2003) Divergent NMDA signals leading to proapoptotic and antiapoptotic pathways in the rat retina. Investig Ophthalmol Vis Sci 44(1):385–392
Dorado C, Rugerio C, Rivas S (2003) Estrés oxidativo y neurodegeneración. Revista de la Facultad de Medicina 46(6):229–235
Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ, Zack DJ (1995) Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Investig Ophthalmol Vis Sci 36(5):774–786
Soto I, Oglesby E, Buckingham BP, Son JL, Roberson ED, Steele MR, Inman DM, Vetter ML, Horner PJ, Marsh-Armstrong N (2008) Retinal ganglion cells downregulate gene expression and lose their axons within the optic nerve head in a mouse glaucoma model. J Neurosci Off J Soc Neurosci 28(2):548–561. https://doi.org/10.1523/JNEUROSCI.3714-07.2008
Vidal-Sanz M, Valiente-Soriano FJ, Ortin-Martinez A, Nadal-Nicolas FM, Jimenez-Lopez M, Salinas-Navarro M, Alarcon-Martinez L, Garcia-Ayuso D, Aviles-Trigueros M, Agudo-Barriuso M, Villegas-Perez MP (2015) Retinal neurodegeneration in experimental glaucoma. Prog Brain Res 220:1–35. https://doi.org/10.1016/bs.pbr.2015.04.008
Dai C, Khaw PT, Yin ZQ, Li D, Raisman G, Li Y (2012) Structural basis of glaucoma: the fortified astrocytes of the optic nerve head are the target of raised intraocular pressure. Glia 60(1):13–28. https://doi.org/10.1002/glia.21242
Chaudhary P, Ahmed F, Quebada P, Sharma SC (1999) Caspase inhibitors block the retinal ganglion cell death following optic nerve transection. Brain Res Mol Brain Res 67(1):36–45
Kermer P, Ankerhold R, Klocker N, Krajewski S, Reed JC, Bahr M (2000) Caspase-9: involvement in secondary death of axotomized rat retinal ganglion cells in vivo. Brain Res Mol Brain Res 85(1–2):144–150
Kermer P, Klocker N, Labes M, Thomsen S, Srinivasan A, Bahr M (1999) Activation of caspase-3 in axotomized rat retinal ganglion cells in vivo. FEBS Lett 453(3):361–364
Cheung ZH, Yip HK, Wu W, So KF (2003) Axotomy induces cytochrome c release in retinal ganglion cells. NeuroReport 14(2):279–282. https://doi.org/10.1097/01.wnr.0000054968.99678.b2
Klocker N, Braunling F, Isenmann S, Bahr M (1997) In vivo neurotrophic effects of GDNF on axotomized retinal ganglion cells. NeuroReport 8(16):3439–3442
Mey J, Thanos S (1993) Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 602(2):304–317
Peinado-Ramon P, Salvador M, Villegas-Perez MP, Vidal-Sanz M (1996) Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study. Investig Ophthalmol Vis Sci 37(4):489–500
Klocker N, Kermer P, Weishaupt JH, Labes M, Ankerhold R, Bahr M (2000) Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3′-kinase/protein kinase B signaling. J Neurosci Off J Soc Neurosci 20(18):6962–6967
Liao R, Yan F, Zeng Z, Farhan M, Little P, Quirion R, Srivastava LK, Zheng W (2016) Amiodarone-induced retinal neuronal cell apoptosis attenuated by IGF-1 via counter regulation of the PI3 k/Akt/FoxO3a pathway. Mol Neurobiol. https://doi.org/10.1007/s12035-016-0211-x
Kikuchi M, Tenneti L, Lipton SA (2000) Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. J Neurosci Off J Soc Neurosci 20(13):5037–5044
Russelakis-Carneiro M, Silveira LC, Perry VH (1996) Factors affecting the survival of cat retinal ganglion cells after optic nerve injury. J Neurocytol 25(6):393–402
Yoles E, Muller S, Schwartz M (1997) NMDA-receptor antagonist protects neurons from secondary degeneration after partial optic nerve crush. J Neurotrauma 14(9):665–675. https://doi.org/10.1089/neu.1997.14.665
Yoles E, Schwartz M (1998) Elevation of intraocular glutamate levels in rats with partial lesion of the optic nerve. Arch Ophthalmol 116(7):906–910
Stys PK (2005) General mechanisms of axonal damage and its prevention. J Neurol Sci 233(1–2):3–13. https://doi.org/10.1016/j.jns.2005.03.031
Whitmore AV, Libby RT, John SW (2005) Glaucoma: thinking in new ways-a role for autonomous axonal self-destruction and other compartmentalised processes? Prog Retin Eye Res 24(6):639–662. https://doi.org/10.1016/j.preteyeres.2005.04.004
Ryu M, Yasuda M, Shi D, Shanab AY, Watanabe R, Himori N, Omodaka K, Yokoyama Y, Takano J, Saido T, Nakazawa T (2012) Critical role of calpain in axonal damage-induced retinal ganglion cell death. J Neurosci Res 90(4):802–815. https://doi.org/10.1002/jnr.22800
Stys PK, Jiang Q (2002) Calpain-dependent neurofilament breakdown in anoxic and ischemic rat central axons. Neurosci Lett 328(2):150–154
Takai Y, Tanito M, Ohira A (2012) Multiplex cytokine analysis of aqueous humor in eyes with primary open-angle glaucoma, exfoliation glaucoma, and cataract. Investig Ophthalmol Vis Sci 53(1):241–247. https://doi.org/10.1167/iovs.11-8434
Nakazawa T, Tamai M, Mori N (2002) Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3 K signaling pathways. Investig Ophthalmol Vis Sci 43(10):3319–3326
Pervan CL (2017) Smad-independent TGF-beta2 signaling pathways in human trabecular meshwork cells. Exp Eye Res 158:137–145. https://doi.org/10.1016/j.exer.2016.07.012
Pattabiraman PP, Rao PV (2010) Mechanistic basis of Rho GTPase-induced extracellular matrix synthesis in trabecular meshwork cells. Am J Physiol Cell Physiol 298(3):C749–C763. https://doi.org/10.1152/ajpcell.00317.2009