Pathophysiology and pathogenesis of circadian rhythm sleep disorders

Springer Science and Business Media LLC - Tập 31 - Trang 1-5 - 2012
Akiko Hida1, Shingo Kitamura1, Kazuo Mishima1
1Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology & Psychiatry, Tokyo, Japan

Tóm tắt

Metabolic, physiological and behavioral processes exhibit 24-hour rhythms in most organisms, including humans. These rhythms are driven by a system of self-sustained clocks and are entrained by environmental cues such as light-dark cycles as well as food intake. In mammals, the circadian clock system is hierarchically organized such that the master clock in the suprachiasmatic nuclei of the hypothalamus integrates environmental information and synchronizes the phase of oscillators in peripheral tissues. The transcription and translation feedback loops of multiple clock genes are involved in the molecular mechanism of the circadian system. Disturbed circadian rhythms are known to be closely related to many diseases, including sleep disorders. Advanced sleep phase type, delayed sleep phase type and nonentrained type of circadian rhythm sleep disorders (CRSDs) are thought to result from disorganization of the circadian system. Evaluation of circadian phenotypes is indispensable to understanding the pathophysiology of CRSD. It is laborious and costly to assess an individual's circadian properties precisely, however, because the subject is usually required to stay in a laboratory environment free from external cues and masking effects for a minimum of several weeks. More convenient measurements of circadian rhythms are therefore needed to reduce patients' burden. In this review, we discuss the pathophysiology and pathogenesis of CRSD as well as surrogate measurements for assessing an individual's circadian phenotype.

Tài liệu tham khảo

Pittendrigh CS: Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol. 1993, 55: 16-54. Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H: Resetting central and peripheral circadian oscillators in transgenic rats. Science. 2000, 288: 682-585. 10.1126/science.288.5466.682. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS: PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA. 2004, 101: 5339-5346. 10.1073/pnas.0308709101. Lowrey PL, Takahashi JS: Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet. 2004, 5: 407-441. 10.1146/annurev.genom.5.061903.175925. Reppert SM, Weaver DR: Coordination of circadian timing in mammals. Nature. 2002, 418: 935-941. 10.1038/nature00965. Takahashi JS, Hong HK, Ko CH, McDearmon EL: The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet. 2008, 9: 764-775. 10.1038/nrg2430. Daan S, Beersma DG, Borbely AA: Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol. 1984, 246: R161-R183. International Classification of Sleep Disorders: Diagnostic and Coding Manual. 2nd edition (ICSD-II). 2005, Darien, IL: American Academy of Sleep Medicine Barion A, Zee PC: A clinical approach to circadian rhythm sleep disorders. Sleep Med. 2007, 8: 566-577. 10.1016/j.sleep.2006.11.017. Okawa M, Uchiyama M: Circadian rhythm sleep disorders: characteristics and entrainment pathology in delayed sleep phase and non-24-h sleep-wake syndrome. Sleep Med Rev. 2007, 11: 485-496. 10.1016/j.smrv.2007.08.001. Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptácek LJ, Fu YH: An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science. 2001, 291: 1040-1043. 10.1126/science.1057499. Xu Y, Toh KL, Jones CR, Shin JY, Fu YH, Ptácek LJ: Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell. 2007, 128: 59-70. 10.1016/j.cell.2006.11.043. Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Saigoh K, Ptácek LJ, Fu YH: Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature. 2005, 434: 640-644. 10.1038/nature03453. Gallego M, Eide EJ, Woolf MF, Virshup DM, Forger DB: An opposite role for tau in circadian rhythms revealed by mathematical modeling. Proc Natl Acad Sci USA. 2006, 103: 10618-10623. 10.1073/pnas.0604511103. Vanselow K, Vanselow JT, Westermark PO, Reischl S, Maier B, Korte T, Herrmann A, Herzel H, Schlosser A, Kramer A: Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev. 2006, 20: 2660-2672. 10.1101/gad.397006. Jones CR, Campbell SS, Zone SE, Cooper F, DeSano A, Murphy PJ, Jones B, Czajkowski L, Ptácek LJ: Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat Med. 1999, 5: 1062-1065. 10.1038/12502. Hirota T, Lewis WG, Liu AC, Lee JW, Schultz PG, Kay SA: A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3β. Proc Natl Acad Sci USA. 2008, 105: 20746-20751. 10.1073/pnas.0811410106. Isojima Y, Nakajima M, Ukai H, Fujishima H, Yamada RG, Masumoto KH, Kiuchi R, Ishida M, Ukai-Tadenuma M, Minami Y, Kito R, Nakao K, Kishimoto W, Yoo SH, Shimomura K, Takao T, Takano A, Kojima T, Nagai K, Sakaki Y, Takahashi JS, Ueda HR: CKIε/δ-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc Natl Acad Sci USA. 2009, 106: 15744-15749. 10.1073/pnas.0908733106. Ebisawa T, Uchiyama M, Kajimura N, Mishima K, Kamei Y, Katoh M, Watanabe T, Sekimoto M, Shibui K, Kim K, Kudo Y, Ozeki Y, Sugishita M, Toyoshima R, Inoue Y, Yamada N, Nagase T, Ozaki N, Ohara O, Ishida N, Okawa M, Takahashi K, Yamauchi T: Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep. 2001, 2: 342-346. 10.1093/embo-reports/kve070. Dijk DJ, Archer SN: PERIOD3, circadian phenotypes, and sleep homeostasis. Sleep Med Rev. 2009, 14: 151-160. Viola AU, Archer SN, James LM, Groeger JA, Lo JC, Skene DJ, von Schantz M, Dijk DJ: PER3 polymorphism predicts sleep structure and waking performance. Curr Biol. 2007, 17: 613-618. 10.1016/j.cub.2007.01.073. Shearman LP, Jin X, Lee C, Reppert SM, Weaver DR: Targeted disruption of the mPer3 gene: subtle effects on circadian clock function. Mol Cell Biol. 2000, 20: 6269-6275. 10.1128/MCB.20.17.6269-6275.2000. Pendergast JS, Friday RC, Yamazaki S: Distinct functions of Period2 and Period3 in the mouse circadian system revealed by in vitro analysis. PLoS One. 2010, 5: e8552-10.1371/journal.pone.0008552. van der Veen DR, Archer SN: Light-dependent behavioral phenotypes in PER3-deficient mice. J Biol Rhythms. 2010, 25: 3-8. 10.1177/0748730409356680. A published erratum appears in J Biol Rhythms 2010, 25:150 Sack RL, Lewy AJ, Blood ML, Keith LD, Nakagawa H: Circadian rhythm abnormalities in totally blind people: incidence and clinical significance. J Clin Endocrinol Metab. 1992, 75: 127-134. 10.1210/jc.75.1.127. Lockley SW, Skene DJ, Arendt J, Tabandeh H, Bird AC, Defrance R: Relationship between melatonin rhythms and visual loss in the blind. J Clin Endocrinol Metab. 1997, 82: 3763-3770. 10.1210/jc.82.11.3763. Lockley SW, Skene DJ, Tabandeh H, Bird AC, Defrance R, Arendt J: Relationship between napping and melatonin in the blind. J Biol Rhythms. 1997, 12: 16-25. 10.1177/074873049701200104. Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, Ronda JM, Silva EJ, Allan JS, Emens JS, Dijk DJ, Kronauer RE: Stability, precision, and near-24-hour period of the human circadian pacemaker. Science. 1999, 284: 2177-2181. 10.1126/science.284.5423.2177. Wright KP, Hughes RJ, Kronauer RE, Dijk DJ, Czeisler CA: Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans. Proc Natl Acad Sci USA. 2001, 98: 14027-14032. 10.1073/pnas.201530198. Gronfier C, Wright KP, Kronauer RE, Czeisler CA: Entrainment of the human circadian pacemaker to longer-than-24-h days. Proc Natl Acad Sci USA. 2007, 104: 9081-9086. 10.1073/pnas.0702835104. Brown SA, Fleury-Olela F, Nagoshi E, Hauser C, Juge C, Meier CA, Chicheportiche R, Dayer JM, Albrecht U, Schibler U: The period length of fibroblast circadian gene expression varies widely among human individuals. PLoS Biol. 2005, 3: e338-10.1371/journal.pbio.0030338. Brown SA, Kunz D, Dumas A, Westermark PO, Vanselow K, Tilmann-Wahnschaffe A, Herzel H, Kramer A: Molecular insights into human daily behavior. Proc Natl Acad Sci USA. 2008, 105: 1602-1607. 10.1073/pnas.0707772105. Pagani L, Semenova EA, Moriggi E, Revell VL, Hack LM, Lockley SW, Arendt J, Skene DJ, Meier F, Izakovic J, Wirz-Justice A, Cajochen C, Sergeeva OJ, Cheresiz SV, Danilenko KV, Eckert A, Brown SA: The physiological period length of the human circadian clock in vivo is directly proportional to period in human fibroblasts. PLoS One. 2010, 5: e13376-10.1371/journal.pone.0013376.