Bệnh lý trong kết nối chức năng, kiểm soát phản hồi và tính ổn định: Một quan điểm toàn cầu về rối loạn phổ tự kỷ

Cognitive Processing - Tập 16 - Trang 1-16 - 2014
James F. Glazebrook1, Rodrick Wallace2
1Department of Mathematics and Computer Science, Eastern Illinois University, Charleston, USA
2Division of Epidemiology, The New York State Psychiatric Institute, New York, USA

Tóm tắt

Chúng tôi nghiên cứu nền tảng của các vấn đề kết nối chức năng trong các rối loạn phổ tự kỷ trong khung lý thuyết thần kinh-cognitive của mô hình không gian toàn cầu. Chúng tôi thực hiện điều này bằng cách quan sát các bất thường của mạng lưới làm giảm tính chất của một kiến trúc mạng thế giới nhỏ được hình thành tốt. Điều này được thảo luận dưới góc độ bệnh lý trong kết nối chức năng và thiếu sự nhất quán trung tâm làm gián đoạn giao tiếp giữa các mạng lưới, do đó làm suy yếu hành động nhận thức hiệu quả. Một thước đo sự nhất quán-kết nối điển hình như một sản phẩm phụ của các kết quả hình ảnh thần kinh khác nhau được xem xét. Điều này có liên quan đến một mô hình kiểm soát phản hồi trong đó một hàm nhất quán trong miền tần số được sửa đổi bởi một tham số tương tác do môi trường xác định. Liên quan đến điều này, chúng tôi thảo luận về câu hỏi về tính ổn định mà về lý thuyết có thể cân bằng chi phí chuyển hóa không cần thiết và sự không nhất quán trong quá trình xử lý. Chúng tôi gợi ý rằng các yếu tố như sự kết nối cục bộ quá mức và sự kết nối toàn cầu dưới mức, cùng với việc tiêu tốn quá mức về chi phí trao đổi chất dẫn đến sự thiếu ổn định trong lõi kết nối của không gian làm việc.

Từ khóa

#Kết nối chức năng #rối loạn phổ tự kỷ #kiểm soát phản hồi #tính ổn định #mô hình không gian toàn cầu.

Tài liệu tham khảo

Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world, human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72 Åström KJ, Murray RM (2008) Feedback control. Princeton University Press, Princeton, NJ Atlan H, Cohen I (1998) Immune information, self-organization and meaning. Int Immunol 10:711–717 Axmacher N et al (2010) Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc Natl Acad Sci USA 107:3228–3233 Baars B (1998) A cognitive theory of consciousness. Cambridge University Press, New York Baars B, Franklin S (2003) How conscious experience and working memory interact. Trends Cogn Sci 73:166–172 Baars B, Franklin S, Ramsoy TZ (2013) Global workspace dynamics: cortical ‘binding and propagation’ enables conscious contents. Front Psychol 4 (Article 200) Baron-Cohen S, Belmonte MK (2005) Autism: a window onto the development of the social and the analytic brain. Annu Rev Neurosci 28:109–126 Barrat A, Barthélemy M, Vespignani A (2008) Dynamical processes on complex networks. Cambridge University Press, Cambridge Bassett DS, Bullmore E (2006) Small world brain networks. Neurosci 12(6):512–523 Beggs JM (2008) The criticality hypothesis: how local cortical networks might optimize information processing. Phil Trans R Soc A 366:329–343 Belmonte MK, Baron-Cohen S (2004) Small-world network properties and the emergence of social cognition: evidence from functional studies of autism. In 3rd international conference on development and learning: developing social brains, San Diego, CA Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Web SJ (2004) Autism and abnormal development of brain connectivity. J Neurosci 24(42):9228–9231 Belmonte MK, Bourgeron T (2006) Fragile X syndrome and autism at the intersection of genetic and neural networks. Nat Neurosci 9(10):1221–1225 Bennett C (1988) Logical depth and physical complexity. In: Herkin R (ed) The universal turing machine: a half-century survey. Oxford University Press, Oxford, pp 227–257 Bracewell RN (2000) The Fourier transform and its applications. McGraw Hill, Boston, MA Casanova MF (2007) The neurobiology of autism. Brain Pathol 17:422–423 Chauhan A, Chauhan V (2006) Oxidative stress in autism. Pathopysiology 13:171–181 Clark A (1997) Being there: putting brain, body and world together again. MIT Press, Cambridge, MA Cohen I (2000) Tending Adam’s garden: evolving the cognitive immune self. Academic Press, New York Courchesne E, Pierce K (2005) Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long distance disconnection. Curr Opin Neurobiol 15:225–230 Courchesne E et al (2007) Mapping early brain development in autism. Neuron 56:1–15 Cover T, Thomas J (1991) Elements of information theory. Wiley, New York Csete M, Doyle JC (2002) Reverse engineering of biological complexity. Science 295:1664–1669 David O, Cosmelli D, Friston KJ (2004) Evaluation of different measures of functional connectivity using a neural mass model. NeuroImage 21:659–673 Dehaene S, Naccache L (2001) Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79:1–37 Dehaene S, Changeux JP (2005) Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness. PLoS Biol 3(5):e141 Dehaene S (2009) Conscious and nonconscious processes: distinct forms of evidence accumulation. Sémin Poincaré XII:89–114 Delbeuck X, Van der Linden M, Collette F (2003) Alzheimer’s disease as a disconnection syndrome? Neuropsychol Rev 13(2):79–92 Dinstein I, Heeger DJ, Loenzi L, Minshew NJ, Malach R, Behrmann M (2012) Unreliable evoked responses in autism. Neuron 71:981–991 Dominguez LG, Veázquez J-LP, Gálan RF (2013) A model of functional brain connectivity and background noise as a biomarker for cognitive phenotypes:application to autism. PLoS ONE 8(4):e61493 Edelman GM, Gally JA, Baars BJ (2011) Biology of consciousness. Front Psychol 73(1):43–52. doi:10.3389/fpsyg.2011.00004 Elia N (2004) When Bode meets Shannon: control-oriented feedback communication schemes. IEEE Trans Autom Control 49(9):1477–1488 English T (1996) Evaluation of evolutionary and genetic optimizers: no free lunch. In: Fogel L, Angeline P, Back T (eds) Evolutionary programming V: proceedings of the fifth annual conference on evolutionary programming. MIT Press, Cambridge, MA, pp 163–169 Erdős P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61 Feynman R (1996) Feynman lectures on computation. Addison-Wesley, Reading, MA Freeman WJ, Ahlfors SP, Menon V (2009) Combining fMRI with EEG and MEG in order to characterise mesoscopic patterns of brain activity related to cognition. Int J Psychophysiol 73(1):43–52 (Lorig TS ed) Freeman WJ, Kozma R, Vitiello G, (2012) Adaptation of the generalized Carnot cycle to describe thermodynamics of cerebral cortex. In: 2012 IEEE world congress on computational intelligence, Australia, pp 3229–3236. IEEE Press, Brisbane Fries P (2005) A mechanism for cognitive dynamics:neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480 Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224 Friston K (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci 11(2):127–138 Friston K (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36 Friston K (2012) Self-organisation, inference and cognition: comment on “Consciousness, crosstalk, and the mereological fallacy: an evolutionary perspective” by Rodrick Wallace. Phys Life Rev 9(4):456–457 Frith U (1989) Autism: explaining the enigma. Blackwell, Oxford, UK Frith U, Happe F (1994) Autism: beyond ‘theory of mind’. Cognition 50:115–132 Frye RE, DeLaTorre R, Taylor H, Slattery J, Melnyk S, Chowdhury N, James SJ (2013) Redox metabolism abnormalities in autistic children associated with mitochondrial disease. Transl Psychiatry 3:e273. doi:10.1038/tp.2013.51 Gaillard R, Dehaene S, Adam C et al (2009) Converging intracranial markers of conscious access. PLS Biol 7(3):0472–0474 Glazebrook JF, Wallace R (2009a) Small worlds and red queens in the global workspace: an information-theoretic approach. Cogn Syst Res 10:333–365 Glazebrook JF, Wallace R (2009b) Rate distortion manifolds as model spaces for cognitive information. Informatica 33:309–345 Grandin T (1992) An inside view of autism. In: Schopler E, Mesibov MB (eds) High functioning individuals with autism. Plenum, New York Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, Meuli R, Thiran J-Ph (2007) Mapping human whole-brain structural networks with diffusion MRI. PLos ONE Issue 7:e597 Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of the human cerebral cortex. PLoS Biol 6(7):e159 Huber K (2007) Fragile X syndrome: molecular mechanisms of cognitive dysfunction. Am J Psychiatry 164(4):556 Itturia-Medina Y, Sotero RC, Canales-Rodríguez EJ, Alemán-Gómez Y, Melie-García L (2008) Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. Neuroimage 40:1064–1076 Just M, Keller T, Malave V, Kana R, Varma S (2012) Autism as a neural disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav Rev 36:1292–1313 Kitano H (2004) Biological robustness. Nat Rev Genet 5(11):826–837 Kozma R, Puljic M, Balister P, Bollobas B, Freeman W (2004) Neuropercolation: a random cellular automata approach to spatio-temporal neurodynamics. Lecture notes in computer science, vol 3305, pp 435–443. Springer, New York Latora V, Marchiori M (2001) Effcient behavior of small-world networks. Phys Rev Lett 87:198701 Lennie P (2003) The cost of cortical computation. Curr Biol 13:493–497 Maia TV, Cleeremans A (2005) Consciousness: converging insights from connectionist modeling and neuroscience. Trends Cogn Sci 9(8):397–404 Marco EJ, Hinkley LBN, Hill SS, Nagarajan SS (2011) Sensory processing in autism: a review of neurophysiologic findings. Pediatr Res 69(5):48R Martins NC, Dahleh MA (2008) Feedback control in the presence of noisy channels: “Bode-like” fundamental limitations of performance. IEEE Trans Autom Control 53(7):1604–1615 Minshew NJ, Williams DL (2007) The new biology of autism. Arch Neurol 64(10):945–950 Müller R-A, Shih P, Keehn B, Deyoe JR, Leyden KM, Shukla DK (2011) Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders. Cereb Cortex 21:2233–2243 Nair G, Fagnani F, Zampieri S, Evans R (2007) Feedback control under data rate constraints: an overview. Proc IEEE 95:108–137 Peters JM, Taquet M, Vega C et al (2013) Brain functional networks in syndromic and non-syndromic autism: a graph theoretical study of EEG connectivity. BMC Med 11:54. doi:10.1186/1741-17015-11-54 Rippon G, Brock J, Brown C, Boucher J (2007) Disordered connectivity in the autistic brain: challenges for the “new psychophysiology”. Int J Psychophysiol 63:164–172 Rubenstein JLR, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2:255–267 Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069 Sakkalis V (2011) Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med 41:1110–1117 Segel LA, Bar-Or RL (1999) On the role of feedback in promoting conflicting goals of the adaptive immune system. J Immunol 163:1342–1349 Sengupta B, Stemmler MB, Friston KJ (2013) Information and efficiency in the nervous system: a synthesis. PLoS Comput Biol 9(7):e1003157. doi:10.1371/journal.pcbi.1003157 Sengupta B, Stemmler MB (2014) Power consumption during neuronal computation. Proc IEEE 102(5):738–750. doi:10.1109/JPROC.2014.2307755 Shanahan M (2010) Embodiment and the inner life. Oxford University Press, Oxford Shanahan M (2012) The brain’s connective core and its role in animal cognition. Phil Trans R Soc B 367:2704–2714 Shannon C (1959) Coding theorems for a discrete source with a fidelity criterion. Inst Radio Eng Int Conv Rec 7:142–163 Shin DK, Cho K-H (2013) Recurrent connections form a phase-locking neuronal tuner for frequency dependent selective communication. Sci Rep 3:2519. doi:10.1038/srep02519 Sporns O, Tononi G, Edelman GM (2002) Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav Brain Res 135:69–74 Sporns O, Honey CJ (2006) Small worlds inside big brains. Proc Natl Acad Sci USA 103(51):19219–19220 Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens Ph (2007) Small world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99 Tyszka JM, Kennedy DP, Paul LK, Adolphs R (2014) Largely typical patterns of resting-state functional connectivity in high-functioning adults with autism. Cereb Cortex 24(7):1894–1905 Varela F, Thompson E, Rosch E (1991) The embodied mind: cognitive science and human experience. MIT Press, Cambridge, MA Wallace R (2005a) Consciousness: a mathematical treatment of the global neuronal workspace model. Springer, New York Wallace R (2005b) A global workspace perspective on mental disorders. Theor Biol Med Model 2:49 Wallace R (2012) Consciousness, crosstalk, and the mereological fallacy: an evolutionary perspective. Phys Life Rev 9:426–453 Wallace R (2014) Metabolic free energy and biological codes: a ‘Data Rate Theorem’ aging model. Bull Math Biol. doi:10.1007/s11538-014-0013-0 Wallace R, Fullilove M (2008) Collective consciousness and its discontents: institutional distributed cognition, racial policy, and public health in the United States. Springer, New York Wallace R, Wallace D (2013) A mathematical approach to multilevel, multiscale health interventions: pharmaceutical industry decline and policy response. Imperial College Press, London Wallace R, Glazebrook JF (2013) Statistical models for morphogenesis: crosstalk, diffusion, and the regulation of developmental topology (submitted) Watts DJ, Strogatz SH (1998) Collective dynamics of “small world” networks. Nature 393:440–442 Welchew D, Ashwin C, Berkouk K, Salvador R, Suckling J, Baron-Cohen S, Bullmore E (2005) Functional disconnectivity of the medial temporal lobe in Asperger’s syndrome. Biol Psychiatry 57:991–998 Yeung RW (2008) Information theory and network coding. Springer, New York Zecavati N, Spence SJ (2009) Neurometabolic disorders and dysfunction in autism spectrum disorders. Curr Neurol Neurosci Rep 9:129–136