Pathogenetic Significance of Long Non-Coding RNAs in the Development of Thoracic and Abdominal Aortic Aneurysms
Tóm tắt
Từ khóa
Tài liệu tham khảo
Clouse, W. D., Hallett, J. W. Jr., Schaff, H. V., Gayari, M. M., Ilstrup, D. M., and Melton, L. J. 3rd (1998) Improved prognosis of thoracic aortic aneurysms: a population-based study, JAMA, 280, 1926-1929, https://doi.org/10.1001/jama.280.22.1926.
Gillum, R. F. (1995) Epidemiology of aortic aneurysm in the United States, J. Clin. Epidemiol., 48, 1289-1298, https://doi.org/10.1016/0895-4356(95)00045-3.
Isselbacher, E. M., Preventza, O., Hamilton Black, J., 3rd, Augoustides, J. G., Beck, A. W., et al. (2022) 2022 ACC/AHA guideline for the diagnosis and management of aortic disease: a report of the american heart association/american college of cardiology joint committee on clinical practice guidelines, Circulation, 146, e334-e482, https://doi.org/10.1161/CIR.0000000000001106.
Golledge, J., Krishna, S. M., and Wang, Y. (2022) Mouse models for abdominal aortic aneurysm, Br. J. Pharmacol., 179, 792-810, https://doi.org/10.1111/bph.15260.
Li, Y., and Maegdefessel, L. (2017) Non-coding RNA contribution to thoracic and abdominal aortic aneurysm disease development and progression, Front. Physiol., 8, 429, https://doi.org/10.3389/fphys.2017.00429.
Paltseva, E. M. (2015) Aortic aneurysms: etiology and pathomorphology [in Russian], Mol. Med., 4, 3-10.
Quintana, R. A., and Taylor, W. R. (2019) Cellular mechanisms of aortic aneurysm formation, Circ. Res., 124, 607-618, https://doi.org/10.1161/CIRCRESAHA.118.313187.
Bararu Bojan Bararu, I., Pleșoianu, C. E., Badulescu, O. V., Vladeanu, M. C., Badescu, M. C., et al. (2023) Molecular and cellular mechanisms involved in aortic wall aneurysm development, Diagnostics (Basel), 13, 253, https://doi.org/10.3390/diagnostics13020253.
Zhang, L., Issa Bhaloo, S., Chen, T., Zhou, B., and Xu, Q. (2018) Role of resident stem cells in vessel formation and arteriosclerosis, Circ. Res., 122, 1608-1624, https://doi.org/10.1161/CIRCRESAHA.118.313058.
D’Amico, F., Doldo, E., Pisano, C., Scioli, M. G., Centofanti, F., et al. (2020) Specific miRNA and gene deregulation characterize the increased angiogenic remodeling of thoracic aneurysmatic aortopathy in marfan syndrome, Int. J. Mol. Sci., 21, 6886, https://doi.org/10.3390/ijms21186886.
Lionakis, N., Briasoulis, A., Zouganeli, V., Koutoulakis, E., Kalpakos, D., et al. (2023) Coronary artery aneurysms: comprehensive review and a case report of a left main coronary artery aneurysm, Curr. Probl. Cardiol., 48, 101700, https://doi.org/10.1016/j.cpcardiol.2023.101700.
Monda, E., Lioncino, M., Verrillo, F., Rubino, M., Caiazza, M., et al. (2023) The Role of Genetic testing in patients with heritable thoracic aortic diseases, Diagnostics (Basel), 13, 772, https://doi.org/10.3390/diagnostics13040772.
Biddinger, A., Rocklin, M., Coselli, J., and Milewicz, D. M. (1997) Familial thoracic aortic dilatations and dissections: a case control study, J. Vasc. Surg., 25, 506-511, https://doi.org/10.1016/s0741-5214(97)70261-1.
Coady, M. A., Davies, R. R., Roberts, M., Goldstein, L. J., Rogalski, M. J., et al. (1999) Familial patterns of thoracic aortic aneurysms, Arch. Surg., 134, 361-367, https://doi.org/10.1001/archsurg.134.4.361.
Albornoz, G., Coady, M. A., Roberts, M., Davies, R. R., Tranquilli, M., et al. (2006) Familial thoracic aortic aneurysms and dissections-incidence, modes of inheritance, and phenotypic patterns, Ann. Thorac. Surg., 82, 1400-1405, https://doi.org/10.1016/j.athoracsur.2006.04.098.
Pyeritz, R. E. (2014) Heritable thoracic aortic disorders, Curr. Opin. Cardiol., 29, 97-102, https://doi.org/10.1097/HCO.0000000000000023.
Duarte, V. E., Yousefzai, R., and Singh, M. N. (2023) Genetically triggered thoracic aortic disease: who should be tested? Methodist DeBakey Cardiovasc J., 19, 24-28, https://doi.org/10.14797/mdcvj.1218.
Krywanczyk, A., Rodriguez, E. R., Tan, C. D., and Gilson, T. (2023) Thoracic aortic aneurysm and dissection: review and recommendations for evaluation, Am. J. Forensic Med. Pathol., 44, 69-76, https://doi.org/10.1097/PAF.0000000000000819.
Mangum, K. D., and Farber, M. A. (2020) Genetic and epigenetic regulation of abdominal aortic aneurysms, Clin. Genet., 97, 815-826, https://doi.org/10.1111/cge.13705.
Gouveia E Melo, R., Silva Duarte, G., Lopes, A., Alves, M., Caldeira, D., et al. (2022) Incidence and prevalence of thoracic aortic aneurysms: a systematic review and meta-analysis of population-based studies, Semin. Thorac. Cardiovasc Surg., 34, 1-16, https://doi.org/10.1053/j.semtcvs.2021.02.029.
Kim, H. W., and Stansfield, B. K. (2017) Genetic and epigenetic regulation of aortic aneurysms, Biomed. Res. Int., 2017, 7268521, https://doi.org/10.1155/2017/7268521.
Gouveia E Melo, R., Silva Duarte, G., Lopes, A., Alves, M., Caldeira, D., et al. (2020) Synchronous and metachronous thoracic aortic aneurysms in patients with abdominal aortic aneurysms: a systematic review and meta-analysis, J. Am. Heart Assoc., 9, e017468, https://doi.org/10.1161/JAHA.120.017468.
Van de Pol, V., Kurakula, K., DeRuiter, M. C., and Goumans, M. J. (2017) Thoracic aortic aneurysm development in patients with bicuspid aortic valve: what is the role of endothelial cells? Front. Physiol., 8, 938, https://doi.org/10.3389/fphys.2017.00938.
Rombouts, K. B., van Merrienboer, T. A. R., Ket, J. C. F., Bogunovic, N., van der Velden, J., and Yeung, K. K. (2022) The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections, Eur. J. Clin. Invest., 52, e13697, https://doi.org/10.1111/eci.13697.
Qian, G., Adeyanju, O., Olajuyin, A., and Guo, X. (2022) Abdominal aortic aneurysm formation with a focus on vascular smooth muscle cells, Life (Basel), 12, 191, https://doi.org/10.3390/life12020191.
Senser, E. M., Misra, S., and Henkin, S. (2021) Thoracic aortic aneurysm: a clinical review, Cardiol. Clin., 39, 505-515, https://doi.org/10.1016/j.ccl.2021.06.003.
Haque, K., and Bhargava, P. (2022) Abdominal aortic aneurysm, Am. Fam. Physician, 106, 165-172.
Wolford, B. N., Hornsby, W. E., Guo, D., Zhou, W., Lin, M., et al. (2019) Clinical implications of identifying pathogenic variants in individuals with thoracic aortic dissection, Circ. Genom. Precis. Med., 12, e002476, https://doi.org/10.1161/CIRCGEN.118.002476.
Iyer, V., Rowbotham, S., Biros, E., Bingley, J., and Golledge, J. (2017) A systematic review investigating the association of microRNAs with human abdominal aortic aneurysms, Atherosclerosis, 261, 78-89, https://doi.org/10.1016/j.atherosclerosis.2017.03.010.
Spin, J. M., Li, D. Y., Maegdefessel, L., Tsao, P. S. (2019) Non-coding RNAs in aneurysmal aortopathy, Vascul. Pharmacol., 114, 110-121, https://doi.org/10.1016/j.vph.2018.06.008.
Xiao, J. (2020) Non-Coding RNAs in Cardiovascular Diseases, Springer Nature Singapore Pte Ltd., Springer Singapore, https://doi.org/10.1007/978-981-15-1671-9.
Han, Y., Zhang, H., Bian, C., Chen, C., Tu, S., et al. (2021) Circular RNA expression: its potential regulation and function in abdominal aortic aneurysms, Oxid. Med. Cell. Longev., 2021, 9934951, https://doi.org/10.1155/2021/9934951.
Schellinger, I. N., Dannert, A. R., Mattern, K., Raaz, U., and Tsao, P. S. (2021) Unresolved issues in RNA therapeutics in vascular diseases with a focus on aneurysm disease, Front. Cardiovasc. Med., 8, 571076, https://doi.org/10.3389/fcvm.2021.571076.
Kucher, A. N., and Nazarenko, M. S. (2023) Regulatory potential of non-coding RNAs colocalized with cardiomyopathy-related genes, Russ. J. Genet., 59, 325-343, https://doi.org/10.1134/S1022795423040051.
Kawaguchi, S., Moukette, B., Hayasaka, T., Haskell, A. K., Mah, J., et al. (2023) Noncoding RNAs as key regulators for cardiac development and cardiovascular diseases, J. Cardiovasc. Dev. Dis., 10, 166, https://doi.org/10.3390/jcdd10040166.
Xu, Y., Yang, S., and Xue, G. (2023) The role of long non-coding RNA in abdominal aortic aneurysm, Front. Genet., 14, 1153899, https://doi.org/10.3389/fgene.2023.1153899.
Hombach, S., and Kretz, M. (2016) Non-coding RNAs: classification, biology and functioning, Adv. Exp. Med. Biol., 937, 3-17, https://doi.org/10.1007/978-3-319-42059-2_1.
Fang, S., Zhang, L., Guo, J., Niu, Y., Wu, Y., et al. (2018) NONCODEV5: a comprehensive annotation database for long non-coding RNAs, Nucleic Acids Res., 46, D308-D314, https://doi.org/10.1093/nar/gkx1107.
Frankish, A., Diekhans, M., Ferreira, A. M., Johnson, R., Jungreis, I., et al. (2019) GENCODE reference annotation for the human and mouse genomes, Nucleic Acids Res., 47, D766-D773, https://doi.org/10.1093/nar/gky955.
Zhang, Y., Zhang, X. O., Chen, T., Xiang, J. F., Yin, Q. F., et al. (2013) Circular intronic long noncoding RNAs, Mol. Cell, 51, 792-806, https://doi.org/10.1016/j.molcel.2013.08.017.
Mattick, J. S., Amaral, P. P., Carninci, P., Carpenter, S., Chang, H. Y., et al. (2023) Long non-coding RNAs: definitions, functions, challenges and recommendations, Nat. Rev. Mol. Cell. Biol., 24, 430-447, https://doi.org/10.1038/s41580-022-00566-8.
Jarroux, J., Morillon, A., and Pinskaya, M. (2017) History, discovery, and classification of lncRNAs, Adv. Exp. Med. Biol., 1008, 1-46, https://doi.org/10.1007/978-981-10-5203-3_1.
Guo, Q., Wang, J., Sun, R., Gu, W., He, Z., et al. (2020) Identification of circulating hub long noncoding RNAs associated with hypertrophic cardiomyopathy using weighted correlation network analysis, Mol. Med. Rep., 22, 4637-4644, https://doi.org/10.3892/mmr.2020.11566.
Guo, Q., Wang, J., Sun, R., He, Z., Chen, Q., et al. (2020) Comprehensive construction of a circular RNA-associated competing endogenous RNA network identified novel circular RNAs in hypertrophic cardiomyopathy by integrated analysis, Front. Genet., 11, 764, https://doi.org/10.3389/fgene.2020.00764.
Singh, D. D., Kim, Y., Choi, S. A., Han, I., and Yadav, D. K. (2023) Clinical significance of microRNAs, long non-coding RNAs, and CircRNAs in cardiovascular diseases, Cells, 12, 1629, https://doi.org/10.3390/cells12121629.
Sun, J., Chen, G., Jing, Y., He, X., Dong, J., et al. (2018) LncRNA expression profile of human thoracic aortic dissection by high-throughput sequencing, Cell. Physiol. Biochem., 46, 1027-1041, https://doi.org/10.1159/000488834.
Ao, X., Ding, W., Li, X., Xu, Q., Chen, X., et al. (2023) Non-coding RNAs regulating mitochondrial function in cardiovascular diseases, J. Mol. Med. (Berl.), 101, 501-526, https://doi.org/10.1007/s00109-023-02305-8.
Wołowiec, Ł., Mędlewska, M., Osiak, J., Wołowiec, A., Grześk, E., et al. (2023) MicroRNA and lncRNA as the future of pulmonary arterial hypertension treatment, Int. J. Mol. Sci., 24, 9735, https://doi.org/10.3390/ijms24119735.
Duggirala, A., Delogu, F., Angelini, T. G., Smith, T., Caputo, M., et al. (2015) Non coding RNAs in aortic aneurysmal disease, Front. Genet., 6, 125, https://doi.org/10.3389/fgene.2015.00125.
Li, G. J., Yang, Q. H., Yang, G. K., Yang, G., Hou, Y., et al. (2023) MiR-125b and SATB1-AS1 might be shear stress-mediated therapeutic targets, Gene, 857, 147181, https://doi.org/10.1016/j.gene.2023.147181.
Li, Y., Liu, Y., Liu, S., Wu, F., Li, S., et al. (2018) Differential expression profile of long non-coding RNAs in human thoracic aortic aneurysm, J. Cell. Biochem., 119, 7991-7997, https://doi.org/10.1002/jcb.26670.
Guo, X., Chang, Q., Pei, H., Sun, X., Qian, X., et al. (2017) Long non-coding RNA-mRNA correlation analysis reveals the potential role of HOTAIR in pathogenesis of sporadic thoracic aortic aneurysm, Eur. J. Vasc. Endovasc. Surg., 54, 303-314, https://doi.org/10.1016/j.ejvs.2017.06.010.
Yang, Y. G., Li, M. X., Kou, L., Zhou, Y., Qin, Y. W., et al. (2016) Long noncoding RNA expression signatures of abdominal aortic aneurysm revealed by microarray, Biomed. Environ. Sci., 29, 713-723, https://doi.org/10.3967/bes2016.096.
Tian, L., Hu, X., He, Y., Wu, Z., Li, D., and Zhang, H. (2018) Construction of lncRNA-miRNA-mRNA networks reveals functional lncRNAs in abdominal aortic aneurysm, Exp. Ther. Med., 16, 3978-3986, https://doi.org/10.3892/etm.2018.6690.
Li, Y., and Yang, N. (2018) Microarray expression profile analysis of long non-coding RNAs in thoracic aortic aneurysm, Kaohsiung J. Med. Sci., 34, 34-42, https://doi.org/10.1016/j.kjms.2017.09.005.
Maitiseyiti, A., Ci, H., Fang, Q., Guan, S., Shawuti, A., et al. (2020) Identification of novel long noncoding RNAs and their role in abdominal aortic aneurysm, BioMed Res. Int., 2020, 3502518, https://doi.org/10.1155/2020/3502518.
Wang, S., Yuan, Q., Zhao, W., and Zhou, W. (2021) Circular RNA RBM33 contributes to extracellular matrix degradation via miR-4268/EPHB2 axis in abdominal aortic aneurysm, PeerJ, 16, e12232, https://doi.org/10.7717/peerj.12232.
Wang, J., Sun, H., Zhou, Y., Huang, K., Que, J., et al. (2019) Circular RNA microarray expression profile in 3,4-benzopyrene/angiotensin II-induced abdominal aortic aneurysm in mice, J. Cell. Biochem., 120, 10484-10494, https://doi.org/10.1002/jcb.28333.
Si, K., Lu, D., and Tian, J. (2021) Integrated analysis and the identification of a circRNA-miRNA-mRNA network in the progression of abdominal aortic aneurysm, PeerJ, 9, e12682, https://doi.org/10.7717/peerj.12682.
Zhang, H., Bian, C., Tu, S., Yin, F., Guo, P., et al. (2021) Construction of the circRNA-miRNA-mRNA regulatory network of an abdominal aortic aneurysm to explore its potential pathogenesis, Dis. Markers, 2021, 9916881, https://doi.org/10.1155/2021/9916881.
Chen, L., Wang, S., Wang, Z., Liu, Y., Xu, Y., et al. (2022) Construction and analysis of competing endogenous RNA network and patterns of immune infiltration in abdominal aortic aneurysm, Front. Cardiovasc. Med., 9, 955838, https://doi.org/10.3389/fcvm.2022.955838.
Li, T., Wang, T., Yan, L., and Ma, C. (2021) Identification of potential novel biomarkers for abdominal aortic aneurysm based on comprehensive analysis of circRNA-miRNA-mRNA networks, Exp. Ther. Med., 22, 1468, https://doi.org/10.3892/etm.2021.10903.
Patamsytė, V., Žukovas, G., Gečys, D., Žaliaduonytė, D., Jakuška, P., et al. (2020) Long noncoding RNAs CARMN, LUCAT1, SMILR, and MALAT1 in thoracic aortic aneurysm: validation of biomarkers in clinical samples, Dis. Markers, 2020, 8521899, https://doi.org/10.1155/2020/8521899.
Zhou, F., Zheng, Z., Zha, Z., Xiong, T., and Pan, Y. (2022) Nuclear paraspeckle assembly transcript 1 enhances hydrogen peroxide-induced human vascular smooth muscle cell Injury by regulating miR-30d-5p/A disintegrin and metalloprotease 10, Circ. J., 86, 1007-1018, https://doi.org/10.1253/circj.CJ-21-0042.
He, Q., Tan, J., Yu, B., Shi, W., and Liang, K. (2015) Long noncoding RNA HIF1A-AS1A reduces apoptosis of vascular smooth muscle cells: implications for the pathogenesis of thoracoabdominal aorta aneurysm, Pharmazie, 70, 310-315.
Nie, H., Zhao, W., Wang, S., and Zhou, W. (2021) Based on bioinformatics analysis lncrna SNHG5 modulates the function of vascular smooth muscle cells through mir-205-5p/SMAD4 in abdominal aortic aneurysm, Immun. Inflamm. Dis., 9, 1306-1320, https://doi.org/10.1002/iid3.478.
Abugov, S. A., Averina, T. B., Akchurin, R. S., Alekyan, B. G., Arakelyan, V. S., Vachev, A. N., Gordeev, M. L., Dzhordzhikiya, R. K., Dyuzhikov, A. A., Eroshkin, I. A., Imaev, T. E., Kavteladze, Z. A., Kovalev, S. A., Mironenko, V. A., Muratov, R. M., Pokrovsky, A. V., Rybka, M. M., Sokolov, V. V., Troitsky, A. V., Fokin, A. A., Chazova, I. E., Charchyan, E. R., Chernov, I. I., Chernyavsky, A. M., Chupin, A. V., Shatalov, K. V., Shipovsky, V. N., Shlyakhto, E. V., and Shneider, Yu. A. (2018) Clinical guidelines. Guidelines for the diagnosis and treatment of aortic diseases, Russ. J. Cardiol. Cardiovasc. Surg., 11, 7-67.
UniProt Consortium (2023) UniProt: the Universal Protein Knowledgebase in 2023, Nucleic Acids Res., 51, D523-D531, https://doi.org/10.1093/nar/gkac1052.
Winter, H., Winski, G., Busch, A., Chernogubova, E., Fasolo, F., et al. (2023) Targeting long non-coding RNA NUDT6 enhances smooth muscle cell survival and limits vascular disease progression, Mol. Ther., 31, 1775-1790, https://doi.org/10.1016/j.ymthe.2023.04.020.
Zhao, Y., Feng, G., Wang, Y., Yue, Y., and Zhao, W. (2014) Regulation of apoptosis by long non-coding RNA HIF1A-AS1 in VSMCs: implications for TAA pathogenesis, Int. J. Clin. Exp. Pathol., 7, 7643-7652.
Zhang, X., Li, H., Guo, X., Hu, J., and Li, B. (2020) Long noncoding RNA hypoxia-inducible Factor-1 alpha-antisense RNA 1 regulates vascular smooth muscle cells to promote the development of thoracic aortic aneurysm by modulating apoptotic protease-activating factor 1 and targeting let-7g, J. Surg. Res., 255, 602-611, https://doi.org/10.1016/j.jss.2020.05.063.
Wang, S., Zhang, X., Yuan, Y., Tan, M., Zhang, L., et al. (2015) BRG1 expression is increased in thoracic aortic aneurysms and regulates proliferation and apoptosis of vascular smooth muscle cells through the long non-coding RNA HIF1A-AS1 in vitro, Eur. J. Cardiothorac. Surg., 47, 439-446, https://doi.org/10.1093/ejcts/ezu215.
Rabkin, S. W. (2017) The role matrix metalloproteinases in the production of aortic aneurysm, Prog. Mol. Biol. Transl. Sci., 147, 239-265, https://doi.org/10.1016/bs.pmbts.2017.02.002.
Maguire, E. M., Pearce, S. W. A., Xiao, R., Oo, A. Y., and Xiao, Q. (2019) Matrix metalloproteinase in abdominal aortic aneurysm and aortic dissection, Pharmaceuticals (Basel), 12, 118, https://doi.org/10.3390/ph12030118.
Li, Y. H., Li, X. M., Lu, M. S., Lv, M. F., and Jin, X. (2017) The expression of the BRM and MMP2 genes in thoracic aortic aneurysm and aortic dissection, Eur. Rev. Med. Pharmacol. Sci., 21, 2743-2748.
Lin, Y., Huang, H., Yu, Y., Zhu, F., Xiao, W., et al. (2021) Long non-coding RNA RP11-465L10.10 promotes vascular smooth muscle cells phenotype switching and MMP9 expression via the NF-κB pathway, Ann. Transl. Med., 9, 1776, https://doi.org/10.21037/atm-21-6402.
Pagani, G., Pandini, C., and Gandellini, P. (2022) Navigating the multiverse of antisense RNAs: the transcription- and RNA-dependent dimension, Noncoding RNA, 8, 74, https://doi.org/10.3390/ncrna8060074.
Cai, Z., Huang, J., Yang, J., Pan, B., Wang, W., et al. (2021) LncRNA SENCR suppresses abdominal aortic aneurysm formation by inhibiting smooth muscle cells apoptosis and extracellular matrix degradation, Bosn. J. Basic Med, Sci., 21, 323-330, https://doi.org/10.17305/bjbms.2020.4994.
Zhang, Z., Zou, G., Chen, X., Lu, W., Liu, J., et al. (2019) Knockdown of lncRNA PVT1 inhibits vascular smooth muscle cell apoptosis and extracellular matrix disruption in a murine abdominal aortic aneurysm model, Mol. Cells, 42, 218-227, https://doi.org/10.14348/molcells.2018.0162.
Li, K., Cui, M., Zhang, K., Wang, G., and Zhai, S. (2020) LncRNA CRNDE affects the proliferation and apoptosis of vascular smooth muscle cells in abdominal aortic aneurysms by regulating the expression of Smad3 by Bcl-3, Cell Cycle, 19, 1036-1047, https://doi.org/10.1080/15384101.2020.1743915.
Sun, Y., Zhong, L., He, X., Wang, S., Lai, Y., et al. (2019) LncRNA H19 promotes vascular inflammation and abdominal aortic aneurysm formation by functioning as a competing endogenous RNA, J. Mol. Cell. Cardiol., 131, 66-81, https://doi.org/10.1016/j.yjmcc.2019.04.004.
He, X., Wang, S., Li, M., Zhong, L., Zheng, H., et al. (2019) Long noncoding RNA GAS5 induces abdominal aortic aneurysm formation by promoting smooth muscle apoptosis, Theranostics, 9, 5558-5576, https://doi.org/10.7150/thno.34463.
Song, H., Yang, Y., Sun, Y., Wei, G., Zheng, H., et al. (2022) Circular RNA Cdyl promotes abdominal aortic aneurysm formation by inducing M1 macrophage polarization and M1-type inflammation, Mol. Ther., 30, 915-931, https://doi.org/10.1016/j.ymthe.2021.09.017.
Huang, S., Lu, W., Ge, D., Meng, N., Li, Y., et al. (2015) A new microRNA signal pathway regulated by long noncoding RNA TGFB2-OT1 in autophagy and inflammation of vascular endothelial cells, Autophagy, 11, 2172-2183, https://doi.org/10.1080/15548627.2015.1106663.
Wang, Y., Nie, W., Yao, K., Wang, Z., and He, H. (2016) Interleukin 6 induces expression of NADPH oxidase 2 in human aortic endothelial cells via long noncoding RNA MALAT1, Pharmazie, 71, 592-597, https://doi.org/10.1691/ph.2016.6598.
Navarro-Corcuera, A., Sehrawat, T. S., Jalan-Sakrikar, N., Gibbons, H. R., Pirius, N. E., et al. (2022) Long non-coding RNA ACTA2-AS1 promotes ductular reaction by interacting with the p300/ELK1 complex, J. Hepatol., 76, 921-933, https://doi.org/10.1016/j.jhep.2021.12.014.
Yu, B., Liu, L., Sun, H., and Chen, Y. (2015) Long noncoding RNA AK056155 involved in the development of Loeys-Dietz syndrome through AKT/PI3K signaling pathway, Int. J. Clin. Exp. Pathol., 8, 10768-10775.
Lino Cardenas, C. L., Kessinger, C. W., Cheng, Y., MacDonald, C., MacGillivray, T., et al. (2018) An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm, Nat. Commun., 9, 1009, https://doi.org/10.1038/s41467-018-03394-7.
Pinard, A., Jones, G. T., and Milewicz, D. M. (2019) Genetics of thoracic and abdominal aortic diseases, Circ. Res., 124, 588-606, https://doi.org/10.1161/CIRCRESAHA.118.312436.
He, X., Li, X., Han, Y., Chen, G., Xu, T., et al. (2021) CircRNA Chordc1 protects mice from abdominal aortic aneurysm by contributing to the phenotype and growth of vascular smooth muscle cells, Mol. Ther. Nucleic Acids, 27, 81-98, https://doi.org/10.1016/j.omtn.2021.11.005.
Gao, C., Sun, J., Zhang, Z., and Xu, Z. (2022) NEAT1 boosts the development of thoracic aortic aneurysm through targeting miR-324-5p/RAN, Arch. Med. Res., 53, 93-99, https://doi.org/10.1016/j.arcmed.2021.06.009.
Zhu, M., Tan, M., Xu, F., Huang, Y., and Yang, J. (2022) Long non-coding RNA XIST negatively regulates thoracic aortic aneurysm cell proliferation by targeting the miR-193a-5p/KLF7 axis, Cell Mol. Biol., 68, 188-193, https://doi.org/10.14715/cmb/2022.68.7.31.
Liang, K., Cui, M., Fu, X., Ma, J., Zhang, K., et al. (2021) LncRNA Xist induces arterial smooth muscle cell apoptosis in thoracic aortic aneurysm through miR-29b-3p/Eln pathway, Biomed. Pharmacother., 137, 111163, https://doi.org/10.1016/j.biopha.2020.111163.
Huang, B., Lu, S., Lai, H., Li, J., Sun, Y., and Wang, C. (2019) LncRNA LOXL1-AS is up-regulated in thoracic aortic aneurysm and regulated proliferation and apoptosis of aortic smooth muscle cells, Biosci. Rep., 39, BSR20191649, https://doi.org/10.1042/BSR20191649.
Chen, S., Chen, H., Yu, C., Lu, R., Song, T., et al. (2019) Long noncoding RNA myocardial infarction associated transcript promotes the development of thoracic aortic by targeting microRNA-145 via the PI3K/Akt signaling pathway, J. Cell. Biochem., 120, 14405-14413, https://doi.org/10.1002/jcb.28695.
Fan, Z., Liu, S., and Zhou, H. (2022) LncRNA H19 regulates proliferation, apoptosis and ECM degradation of aortic smooth muscle cells via miR-1-3p/ADAM10 axis in thoracic aortic aneurysm, Biochem. Genet., 60, 790-806, https://doi.org/10.1007/s10528-021-10118-y.
Xiao, W., Li, X., Ji, C., Shi, J., and Pan, Y. (2020) LncRNA Sox2ot modulates the progression of thoracic aortic aneurysm by regulating miR-330-5p/Myh11, Biosci. Rep., 40, BSR20194040, https://doi.org/10.1042/BSR20194040.
Ou, M., Chu, Y., Zhang, Q., Zhao, H., and Song, Q. (2022) HOXA cluster antisense RNA 2 elevates KIAA1522 expression through microRNA-520d-3p and insulin like growth factor 2 mRNA binding protein 3 to promote the growth of vascular smooth muscle cells in thoracic aortic aneurysm, ESC Heart Fail., 9, 2955-2966, https://doi.org/10.1002/ehf2.13968.
Xia, Q., Zhang, L., Yan, H., Yu, L., Shan, W., and Jiang, H. (2020) LUCAT1 contributes to MYRF-dependent smooth muscle cell apoptosis and may facilitate aneurysm formation via the sequestration of miR-199a-5p, Cell. Biol. Int., 44, 755-763, https://doi.org/10.1002/cbin.11270.
Cai, B., Yang, B., Huang, D., Wang, D., Tian, J., et al. (2020) STAT3-induced up-regulation of lncRNA NEAT1 as a ceRNA facilitates abdominal aortic aneurysm formation by elevating TULP3, Biosci. Rep, 40, BSR20193299, https://doi.org/10.1042/BSR20193299.
Zhang, D., Lu, D., Xu, R., Zhai, S., and Zhang, K. (2022) Inhibition of XIST attenuates abdominal aortic aneurysm in mice by regulating apoptosis of vascular smooth muscle cells through miR-762/MAP2K4 axis, Microvasc. Res., 140, 104299, https://doi.org/10.1016/j.mvr.2021.104299.
Zou, L., Xia, P. F., Chen, L., and Hou, Y. Y. (2021) XIST knockdown suppresses vascular smooth muscle cell proliferation and induces apoptosis by regulating miR-1264/WNT5A/β-catenin signaling in aneurysm, Biosci. Rep., 41, BSR20201810, https://doi.org/10.1042/BSR20201810.
Huang, Y., Ren, L., Li, J., and Zou, H. (2021) Long non-coding RNA PVT1/microRNA miR-3127-5p/NCK-associated protein 1-like axis participates in the pathogenesis of abdominal aortic aneurysm by regulating vascular smooth muscle cells, Bioengineered, 12, 12583-12596, https://doi.org/10.1080/21655979.2021.2010384.
Lai, Y., Li, J., Zhong, L., He, X., Si, X., et al. (2019) The pseudogene PTENP1 regulates smooth muscle cells as a competing endogenous RNA, Clin. Sci. (Lond), 133, 1439-1455, https://doi.org/10.1042/CS20190156.
Li, D. Y., Busch, A., Jin, H., Chernogubova, E., Pelisek, J., et al. (2018) H19 induces abdominal aortic aneurysm development and progression, Circulation, 138, 1551-1568, https://doi.org/10.1161/CIRCULATIONAHA.117.032184.
Lin, H., You, B., Lin, X., Wang, X., Zhou, D., et al. (2020) Silencing of long non-coding RNA Sox2ot inhibits oxidative stress and inflammation of vascular smooth muscle cells in abdominal aortic aneurysm via microRNA-145-mediated Egr1 inhibition, Aging (Albany NY), 12, 12684-12702, https://doi.org/10.18632/aging.103077.
Li, H., Zhang, H., Wang, G., Chen, Z., and Pan, Y. (2020) LncRNA LBX2-AS1 facilitates abdominal aortic aneurysm through miR-4685-5p/LBX2 feedback loop, Biomed. Pharmacother., 129, 109904, https://doi.org/10.1016/j.biopha.2020.109904.
Ma, X., Xu, J., Lu, Q., Feng, X., Liu, J., et al. (2022) Hsa_circ_0087352 promotes the inflammatory response of macrophages in abdominal aortic aneurysm by adsorbing hsa-miR-149-5p, Int. Immunopharmacol., 107, 108691, https://doi.org/10.1016/j.intimp.2022.108691.
Liu, Y., Zhong, Z., Xiao, L., Li, W., Wang, Z., et al. (2021) Identification of Circ-FNDC3B, an overexpressed circRNA in abdominal aortic aneurysm, as a regulator of vascular smooth Muscle cells, Int. Heart. J., 62, 1387-1398, https://doi.org/10.1536/ihj.21-186.
Wei, J., Wang, H., and Zhao, Q. (2023) Circular RNA suppression of vascular smooth muscle apoptosis through the miR-545-3p/CKAP4 axis during abdominal aortic aneurysm formation, Vasc. Med., 28, 104-112, https://doi.org/10.1177/1358863X221132591.
Yang, R., Wang, Z., Meng, G., and Hua, L. (2020) Circular RNA CCDC66 facilitates abdominal aortic aneurysm through the overexpression of CCDC66, Cell. Biochem. Funct., 38, 830-838, https://doi.org/10.1002/cbf.3494.
Tian, Z., Sun, Y., Sun, X., Wang, J., and Jiang, T. (2020) LINC00473 inhibits vascular smooth muscle cell viability to promote aneurysm formation via miR-212-5p/BASP1 axis, Eur. J. Pharmacol., 873, 172935, https://doi.org/10.1016/j.ejphar.2020.172935.
Gareev, I., Beylerli, O., Aliev, G., Pavlov, V., Izmailov, A., Zhang, Y., Liang, Y., and Yang, G. (2020) The role of long non-coding RNAs in intracranial aneurysms and subarachnoid hemorrhage, Life (Basel), 10, 155, https://doi.org/10.3390/life10090155.