Cơ chế bệnh sinh và tiến triển của bệnh xơ gan: góc nhìn hiện tại

Der Gastroenterologe - Tập 16 - Trang 137-148 - 2021
T. Bruns1, C. Trautwein1
1Medizinische Klinik III, Universitätsklinikum Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Deutschland

Tóm tắt

Bệnh xơ gan truyền thống được coi là giai đoạn cuối không thể đảo ngược của nhiều bệnh gan mạn tính, dẫn đến tử vong qua sự phát triển của các biến chứng tăng áp lực tĩnh mạch cửa và suy gan. Ngày nay, bệnh xơ gan được hiểu là một tình trạng bệnh lý không đồng nhất, về nguyên tắc có thể đảo ngược, trong đó gan ngay cả trong giai đoạn bệnh nặng vẫn luôn trải qua sự tái cấu trúc liên tục do quá trình tạo sợi và tái tạo mô sợi. Tăng áp lực tĩnh mạch cửa là kết quả của sự co mạch trong gan và giãn mạch ở tạng. Sự chuyển vị của vi khuẩn có hại hỗ trợ cho tình trạng suy gan lâm sàng và suy chức năng tạng. Trong khi sự tiến triển ở giai đoạn bù trừ của bệnh xơ gan chủ yếu được đặc trưng bởi sự gia tăng áp lực tĩnh mạch cửa, thì ở giai đoạn không bù trừ, nó đi kèm với sự viêm nhiễm toàn thân. Hiểu biết ngày càng tăng về các cơ chế bệnh sinh chi phối giai đoạn là điều kiện tiên quyết cho các mục tiêu điều trị được cá nhân hóa và các phương pháp điều trị được cá nhân hóa.

Từ khóa

#xơ gan #gan #tổn thương gan mạn tính #tạo sợi #tăng áp lực tĩnh mạch cửa #vi khuẩn #suy gan #phương pháp điều trị cá nhân hóa

Tài liệu tham khảo

Blachier M, Leleu H, Peck-Radosavljevic M, Valla D‑C, Roudot-Thoraval F (2013) The burden of liver disease in Europe: a review of available epidemiological data. J Hepatol 58:593–608. https://doi.org/10.1016/j.jhep.2012.12.005 Hytiroglou P, Snover DC, Alves V, Balabaud C, Bhathal PS, Bioulac-Sage P et al (2012) Beyond “cirrhosis”: a proposal from the International Liver Pathology Study Group. Am J Clin Pathol 137:5–9. https://doi.org/10.1309/AJCP2T2OHTAPBTMP Rosselli M, MacNaughtan J, Jalan R, Pinzani M (2013) Beyond scoring: a modern interpretation of disease progression in chronic liver disease. Gut 62:1234–1241. https://doi.org/10.1136/gutjnl-2012-302826 Garcia-Tsao G, Friedman S, Iredale J, Pinzani M (2010) Now there are many (stages) where before there was one: In search of a pathophysiological classification of cirrhosis. Hepatology 51:1445–1449. https://doi.org/10.1002/hep.23478 Kim SU, Oh HJ, Wanless IR, Lee S, Han K‑H, Park YN (2012) The Laennec staging system for histological sub-classification of cirrhosis is useful for stratification of prognosis in patients with liver cirrhosis. J Hepatol 57:556–563. https://doi.org/10.1016/j.jhep.2012.04.029 Seki E, Schwabe RF (2015) Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology 61:1066–1079. https://doi.org/10.1002/hep.27332 Arroyo V, Angeli P, Moreau R, Jalan R, Clària J, Trebicka J et al (2020) The systemic inflammation hypothesis: towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis. J Hepatol. https://doi.org/10.1016/j.jhep.2020.11.048 Mehta G, Gustot T, Mookerjee RP, Garcia-Pagan JC, Fallon MB, Shah VH et al (2014) Inflammation and portal hypertension—the undiscovered country. J Hepatol 61:155–163. https://doi.org/10.1016/j.jhep.2014.03.014 Clària J, Arroyo V, Moreau R (2016) The acute-on-chronic liver failure syndrome, or when the innate immune system goes astray. J Immunol 197:3755–3761. https://doi.org/10.4049/jimmunol.1600818 Kisseleva T, Brenner D (2020) Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol. https://doi.org/10.1038/s41575-020-00372-7 Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA et al (2007) TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 13:1324–1332. https://doi.org/10.1038/nm1663 Borkham-Kamphorst E, Weiskirchen R (2016) The PDGF system and its antagonists in liver fibrosis. Cytokine Growth Factor Rev 28:53–61. https://doi.org/10.1016/j.cytogfr.2015.10.002 Iwaisako K, Jiang C, Zhang M, Cong M, Moore-Morris TJ, Park TJ et al (2014) Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci U S A 111:E3297–E3305. https://doi.org/10.1073/pnas.1400062111 Liu X, Xu J, Rosenthal S, Zhang L‑J, McCubbin R, Meshgin N et al (2020) Identification of lineage-specific transcription factors that prevent activation of hepatic stellate cells and promote fibrosis resolution. Gastroenterology 158:1728–1744.e14. https://doi.org/10.1053/j.gastro.2020.01.027 Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667. https://doi.org/10.1016/j.cell.2008.06.049 Jeong W‑I, Park O, Radaeva S, Gao B (2006) STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology 44:1441–1451. https://doi.org/10.1002/hep.21419 Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL, Ali A et al (2012) Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci 109:E3186–E3195. https://doi.org/10.1073/pnas.1119964109 Hytiroglou P, Theise ND (2018) Regression of human cirrhosis: an update, 18 years after the pioneering article by Wanless et al. Virchows Arch 473:15–22. https://doi.org/10.1007/s00428-018-2340-2 Bosch J, Groszmann RJ, Shah VH (2015) Evolution in the understanding of the pathophysiological basis of portal hypertension: how changes in paradigm are leading to successful new treatments. J Hepatol 62:S121–S130. https://doi.org/10.1016/j.jhep.2015.01.003 Fernandez M (2015) Molecular pathophysiology of portal hypertension. Hepatology 61(Md):1406–1415. https://doi.org/10.1002/hep.27343 Newby DE, Hayes PC (2002) Hyperdynamic circulation in liver cirrhosis: not peripheral vasodilatation but ‘splanchnic steal. QJM Int J Med 95:827–830. https://doi.org/10.1093/qjmed/95.12.827 Jepsen P, Ott P, Andersen PK, Sørensen HT, Vilstrup H (2010) Clinical course of alcoholic liver cirrhosis: a Danish population-based cohort study. Hepatology 51:1675–1682. https://doi.org/10.1002/hep.23500 Costa D, Simbrunner B, Jachs M, Hartl L, Bauer D, Paternostro R et al (2020) Systemic inflammation increases across distinct stages of advanced chronic liver disease and correlates with decompensation and mortality. J Hepatol. https://doi.org/10.1016/j.jhep.2020.10.004 D’Amico G, Morabito A, D’Amico M, Pasta L, Malizia G, Rebora P et al (2018) Clinical states of cirrhosis and competing risks. J Hepatol 68:563–576. https://doi.org/10.1016/j.jhep.2017.10.020 D’Amico G, Pasta L, Morabito A, D’Amico M, Caltagirone M, Malizia G et al (2014) Competing risks and prognostic stages of cirrhosis: a 25-year inception cohort study of 494 patients. Aliment Pharmacol Ther 39:1180–1193. https://doi.org/10.1111/apt.12721 Selicean S, Wang C, Guixé-Muntet S, Stefanescu H, Kawada N, Gracia-Sancho J (2021) Regression of portal hypertension: underlying mechanisms and therapeutic strategies. Hepatol Int 15:36–50. https://doi.org/10.1007/s12072-021-10135-4 Guha IN, Harris R, Berhane S, Dillon A, Coffey L, James MW et al (2019) Validation of a model for identification of patients with compensated cirrhosis at high risk of decompensation. Clin Gastroenterol Hepatol 17:2330–2338.e1. https://doi.org/10.1016/j.cgh.2019.01.042 Abraldes JG, Garcia-Tsao G (2019) Simple clinical tools to predict decompensation in patients with compensated cirrhosis: an unmet need. Clin Gastroenterol Hepatol 17:2179–2181. https://doi.org/10.1016/j.cgh.2019.04.026 Trebicka J, Gu W, de Ledinghen V, Aubé C, Krag A, Praktiknjo M et al (2021) Two-dimensional shear wave elastography predicts survival in advanced chronic liver disease. Gut. https://doi.org/10.1136/gutjnl-2020-323419 Moreau R, Jalan R, Gines P, Pavesi M, Angeli P, Cordoba J et al (2013) Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 144:1426–1437, 1437.e1‑9. https://doi.org/10.1053/j.gastro.2013.02.042 Trebicka J, Fernandez J, Papp M, Caraceni P, Laleman W, Gambino C et al (2020) The PREDICT study uncovers three clinical courses of acutely decompensated cirrhosis that have distinct pathophysiology. J Hepatol 73:842–854. https://doi.org/10.1016/j.jhep.2020.06.013 Bernardi M, Caraceni P (2018) Novel perspectives in the management of decompensated cirrhosis. Nat Rev Gastroenterol Hepatol 15:753–764. https://doi.org/10.1038/s41575-018-0045-2 Villanueva C, Albillos A, Genescà J, Garcia-Pagan JC, Calleja JL, Aracil C et al (2019) β blockers to prevent decompensation of cirrhosis in patients with clinically significant portal hypertension (PREDESCI): a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 393:1597–1608. https://doi.org/10.1016/S0140-6736(18)31875-0 Caraceni P, Riggio O, Angeli P, Alessandria C, Neri S, Foschi FG et al (2018) Long-term albumin administration in decompensated cirrhosis (ANSWER): an open-label randomised trial. Lancet 391:2417–2429. https://doi.org/10.1016/S0140-6736(18)30840-7 Kaplan DE, Serper MA, Mehta R, Fox R, John B, Aytaman A et al (2019) Effects of hypercholesterolemia and Statin exposure on survival in a large national cohort of patients with cirrhosis. Gastroenterology 156:1693–1706.e12. https://doi.org/10.1053/j.gastro.2019.01.026 Villa E, Cammà C, Marietta M, Luongo M, Critelli R, Colopi S et al (2012) Enoxaparin prevents portal vein thrombosis and liver decompensation in patients with advanced cirrhosis. Gastroenterology 143:1253–1260.e4. https://doi.org/10.1053/j.gastro.2012.07.018