Path properties of the solution to the stochastic heat equation with Lévy noise

Springer Science and Business Media LLC - Tập 7 - Trang 123-168 - 2018
Carsten Chong1, Robert C. Dalang1, Thomas Humeau1
1Institut de Mathématiques, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Tóm tắt

We consider sample path properties of the solution to the stochastic heat equation, in $${\mathbb {R}}^d$$ or bounded domains of $${\mathbb {R}}^d$$ , driven by a Lévy space–time white noise. When viewed as a stochastic process in time with values in an infinite-dimensional space, the solution is shown to have a càdlàg modification in fractional Sobolev spaces of index less than $$-\frac{d}{2}$$ . Concerning the partial regularity of the solution in time or space when the other variable is fixed, we determine critical values for the Blumenthal–Getoor index of the Lévy noise such that noises with a smaller index entail continuous sample paths, while Lévy noises with a larger index entail sample paths that are unbounded on any non-empty open subset. Our results apply to additive as well as multiplicative Lévy noises, and to light- as well as heavy-tailed jumps.

Tài liệu tham khảo

Balan, R.M.: SPDEs with \(\alpha \)-stable Lévy noise: a random field approach. Int. J. Stoch. Anal. (2014). https://doi.org/10.1155/2014/793275 Balan, R.M.: Integration with respect to Lévy colored noise, with applications to SPDEs. Stochastics 83(3), 363–381 (2015) Bally, V., Millet, A., Sanz-Solé, M.: Approximation and support theorem in Hölder norm for parabolic stochastic partial differential equations. Ann. Probab. 23(1), 178–222 (1995) Bichteler, K., Jacod, J.: Random measures and stochastic integration. In: Kallianpur, G. (ed.) Theory and Application of Random Fields, pp. 1–18. Springer, Berlin (1983) Bichteler, K., Lin, S.J.: On the stochastic Fubini theorem. Stoch. Stoch. Rep 54(3–4), 271–279 (1995) Bogachev, V.I.: Measure Theory, vol. I. Springer, Berlin (2007) Brzeźniak, Z., Goldys, B., Imkeller, P., Peszat, S., Priola, E., Zabczyk, J.: Time irregularity of generalized Ornstein–Uhlenbeck processes. C. R. Acad. Sci. Paris Ser. I 348(5–6), 273–276 (2010) Brzeźniak, Z., Hausenblas, E.: Maximal regularity for stochastic convolutions driven by Lévy processes. Probab. Theory Relat. Fields 145(3–4), 615–637 (2009) Brzeźniak, Z., Zabczyk, J.: Regularity of Ornstein–Uhlenbeck processes driven by a Lévy white noise. Potential Anal. 32(2), 153–188 (2010) Chen, L., Dalang, R.C.: Hölder-continuity for the nonlinear stochastic heat equation with rough initial conditions. Stoch. Partial Differ. Equ. Anal. Comput. 2(3), 316–352 (2014) Chong, C.: Lévy-driven Volterra equations in space and time. J. Theor. Probab. 30(3), 1014–1058 (2017) Chong, C.: Stochastic PDEs with heavy-tailed noise. Stoch. Process. Appl. 127(7), 2262–2280 (2017) Chong, C., Klüppelberg, C.: Integrability conditions for space-time stochastic integrals: theory and applications. Bernoulli 21(4), 2190–2216 (2015) Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall, Boca Raton (2004) Dalang, R .C.: Extending the martingale measure stochastic integral with applications to spatially homogeneous S. P. D. E’s. Electron. J. Probab. 4(6), 1–29 (1999) Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge (1990) Èĭdel’man, S.D., Ivasišen, S.D.: Investigation of the Green matrix for a homogeneous parabolic boundary value problem. Trans. Moscow Math. Soc. 23, 179–242 (1970) Gihman, I.I., Skorohod, A.V.: The Theory of Stochastic Processes, vol. 1. Springer, New York (1974) Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014) Grisvard, P.: Caractérisation de quelques espaces d’interpolation. Arch. Ration. Mech. Anal. 25(1), 40–63 (1967) Hausenblas, E.: Existence, uniqueness and regularity of parabolic SPDEs driven by Poisson random measure. Electron. J. Probab. 10(46), 1496–1546 (2005) Hu, Y., Huang, J., Nualart, D., Tindel, S.: Stochastic heat equations with general multiplicative Gaussian noises: Hölder continuity and intermittency. Electron. J. Probab. 20(55), 1–50 (2015) Khoshnevisan, D.: Analysis of Stochastic Partial Differential Equations. American Mathematical Society, Providence (2014) Kotelenez, P.: A submartingale type inequality with applications to stochastic evolution equations. Stochastics 8(2), 139–151 (1982) Lebedev, V.A.: Behavior of random measures under filtration change. Theory Probab. Appl. 40(4), 645–652 (1996) Lebedev, V.A.: The Fubini theorem for stochastic integrals with respect to \({L}^0\)-valued random measures depending on a parameter. Theory Probab. Appl. 40(2), 285–293 (1996) Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications, vol. 1. Dunod, Paris (1968) Marinelli, C., Röckner, M.: On maximal inequalities for purely discontinuous martingales in infinite dimensions. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds.) Séminaire de Probabilités XLVI, pp. 293–315. Springer, Cham (2014) Mytnik, L., Perkins, E.: Regularity and irregularity of \((1+\beta )\)-stable super-Brownian motion. Ann. Probab. 31(3), 1413–1440 (2003) Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733–791 (2015) Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach. Cambridge University Press, Cambridge (2007) Peszat, S., Zabczyk, J.: Time regularity of solutions to linear equations with Lévy noise in infinite dimensions. Stoch. Process. Appl. 123(3), 719–751 (2013) Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2005) Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, Boca Raton (1994) Saint Loubert Bié, E.: Étude d’une EDPS conduite par un bruit poissonnien. Probab. Theory Relat. Fields 111(2), 287–321 (1998) Sanz-Solé, M., Sarrà, M.: Hölder continuity for the stochastic heat equation with spatially correlated noise. In: Dalang, R.C., Dozzi, M., Russo, F. (eds.) Seminar on Stochastic Analysis, Random Fields and Applications III. Birkhäuser, Basel (2002) Sanz-Solé, M., Vuillermot, P.-A.: Equivalence and Hölder–Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations. Ann. Inst. H. Poincaré Probab. Statist. 39(4), 703–742 (2003) Van den Berg, M.: A Gaussian lower bound for the Dirichlet heat kernel. Bull. Lond. Math. Soc. 24(5), 475–477 (1992) Walsh, J.B.: An introduction to stochastic partial differential equations. In: Hennequin, P.L. (ed.) École d’Été de Probabilités de Saint-Flour, XIV–1984, pp. 265–439. Springer, Berlin (1986)