Path planning algorithm for unmanned surface vehicle formations in a practical maritime environment

Ocean Engineering - Tập 97 - Trang 126-144 - 2015
Yuanchang Liu1, Richard Bucknall1
1Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Antonelli, G., Arrichiello, F., Chiaverini, S., 2006. Experiments of formation control with collisions avoidance using the null-space-based behavioral control. In: 2006 14th Mediterranean Conference on Control and Automation, MED׳06, IEEE, pp. 1–6.

Asl, 2014, Control of leader follower formation and path planning of mobile robots using asexual reproduction optimization (aro), Appl. Soft Comput., 14, 563

Bai, C., Duan, H., Li, C., Zhang, Y., 2009. Dynamic multi-uavs formation reconfiguration based on hybrid diversity-pso and time optimal control. In: Intelligent Vehicles Symposium, IEEE, pp. 775–779.

Balch, 1998, Behavior-based formation control for multirobot teams, IEEE Transact. Robot. Autom., 14, 926, 10.1109/70.736776

Barfoot, 2004, Motion planning for formations of mobile robots, Robot. Auton. Syst., 46, 65, 10.1016/j.robot.2003.11.004

Borrelli, F., Keviczky, T., Balas, G., 2004. Collision-free uav formation flight using decentralized optimization and invariant sets. In: 43rd IEEE Conference on Decision and Control, CDC, vol. 1, pp. 1099–1104.

Cao, Z., Xie, L., Zhang, B., Wang, S., Tan, M., 2003. Formation constrained multi-robot system in unknown environments. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA ׳03, vol. 1, pp. 735–740.

Cong, 2011, Distributed attitude synchronization of formation flying via consensus-based virtual structure, Acta Astronaut., 68, 1973, 10.1016/j.actaastro.2010.11.014

Cui, 2010, Leader follower formation control of underactuated autonomous underwater vehicles, Ocean Eng., 37, 1491, 10.1016/j.oceaneng.2010.07.006

Duan, 2008, Optimal formation reconfiguration control of multiple ucavs using improved particle swarm optimization, J. Bionic Eng., 5, 340, 10.1016/S1672-6529(08)60179-1

Fahimi, 2007, Sliding-mode formation control for underactuated surface vessels, IEEE Trans. Robot., 23, 617, 10.1109/TRO.2007.898961

Garrido, 2011, Robot formation motion planning using fast marching, Robot. Auton. Syst., 59, 675, 10.1016/j.robot.2011.05.011

Ge, 2002, Dynamic motion planning for mobile robots using potential field method, Auton. Robots, 13, 207, 10.1023/A:1020564024509

Ghommam, 2010, Formation path following control of unicycle-type mobile robots, Robot. Auton. Syst., 58, 727, 10.1016/j.robot.2009.10.007

Gomez, 2013, Planning robot formations with fast marching square including uncertainty conditions, Robot. Auton. Syst., 61, 137, 10.1016/j.robot.2012.10.009

Kala, 2012, Multi-robot path planning using co-evolutionary genetic programming, Expert Syst. Appl., 39, 3817, 10.1016/j.eswa.2011.09.090

Khatib, 1986, Real-time obstacle avoidance for manipulators and mobile robots, Int. J. Robot. Res., 5, 90, 10.1177/027836498600500106

Kim, 2014, Angular rate-constrained path planning algorithm for unmanned surface vehicles, Ocean Eng., 84, 37, 10.1016/j.oceaneng.2014.03.034

Liu, 2007, Robust leader–follower formation control of mobile robots based on a second order kinematics model, Acta Autom. Sin., 33, 947

Mehrjerdi, 2011, Nonlinear coordination control for a group of mobile robots using a virtual structure, Mechatronics, 21, 1147, 10.1016/j.mechatronics.2011.06.006

Morbidi, 2011, Visibility maintenance via controlled invariance for leader follower vehicle formations, Automatica, 47, 1060, 10.1016/j.automatica.2011.01.065

Naeem, 2012, Colregs-based collision avoidance strategies for unmanned surface vehicles, Mechatronics, 22, 669, 10.1016/j.mechatronics.2011.09.012

Paul, 2008, Modelling of uav formation flight using 3d potential field, Simul. Model. Pract. Theory, 16, 1453, 10.1016/j.simpat.2008.08.005

Peng, 2013, Leader follower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach, Robot. Auton. Syst., 61, 988, 10.1016/j.robot.2013.05.004

Qu, 2013, An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots, Neurocomputing, 120, 509, 10.1016/j.neucom.2013.04.020

Ren, 2008, Decentralization of virtual structures in formation control of multiple vehicle systems via consensus strategies, Eur. J. Control, 14, 93, 10.3166/ejc.14.93-103

Sheng, 2010, 592

Tam, 2010, Collision risk assessment for ships, J. Mar. Sci. Technol., 15, 257, 10.1007/s00773-010-0089-7

Tam, 2013, Cooperative path planning algorithm for marine surface vessels, Ocean Eng., 57, 25, 10.1016/j.oceaneng.2012.09.003

Tam, 2009, Review of collision avoidance and path planning methods for ships in close range encounters, J. Navig., 62, 455, 10.1017/S0373463308005134

Thakur, 2012, Gpu based generation of state transition models using simulations for unmanned surface vehicle trajectory planning, Robot. Auton. Syst., 60, 1457, 10.1016/j.robot.2012.07.009

Wang, 2008, Potential-based obstacle avoidance in formation control, J. Control Theory Appl., 6, 311, 10.1007/s11768-008-6222-z

Xue, 2011, Automatic simulation of ship navigation, Ocean Eng., 38, 2290, 10.1016/j.oceaneng.2011.10.011

Yang, D., Jinyin Chenand Matsumoto, N., Yamane, Y., 2006. Multi-robot path planning based on cooperative co-evolution and adaptive cga. In: IAT ׳06. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 547–550.

Yang, 2011, Motion planning for multi-hug formation in an environment with obstacles, Ocean Eng., 38, 2262, 10.1016/j.oceaneng.2011.10.008

Zheng, 2004, Coevolving and cooperating path planner for multiple unmanned air vehicles, Eng. Appl. Artif. Intell., 17, 887, 10.1016/j.engappai.2004.08.016