Path integrals on symmetric spaces and group manifolds
Tóm tắt
Invariant path integrals on symmetric and group spaces are defined in terms of a sum over the paths formed by broken geodesic segments. Their evaluation proceeds by using the mean value properties of functions over the geodesic and complex radius spheres. It is shown that on symmetric spaces the invariant path integral gives a kernel of the Schrödinger equation in terms of the spectral resolution of the zonal functions of the space. On compact group spaces the invariant path integral reduces to a sum over powers of Gaussian-type integrals which, for a free particle, yields the standard Van Vleck-Pauli propagator. Explicit calculations are performed for the case ofSU(2) andU(N) group spaces.
Tài liệu tham khảo
Berezin, F. A., and Gel'fand, I. M. (1962).American Mathematical Society Translations, Series 2,21, 193.
Berezin, F. A. (1962).American Mathematical Society Translations, Series 2,21, 239.
Biederharn, L. C., (1963).Journal of Mathematical Physics,4, 436.
Bohm, M., and Junker, G. (1987).Journal of Mathematical Physics,28, 1978.
Courant, R., and Hilbert, D. (1962).Methods of Mathematical Physics, Vol. 2, Interscience, London.
DeWitt, B. S. (1957).Reviews of Modern Physics,29, 377.
Dowker, J. S. (1971).Annals of Physics,62, 361.
Edwards, S. F., and Gulyaev, Y. V. (1964).Proceedings of the Royal Society of London A,279, 229.
Godement, R. (1952).Transactions of the American Mathematical Society,73, 496.
Groshe, C. (1991).Journal of Mathematical Physics,32, 1984.
Helgason, S. (1978).Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York.
Kobyashi, S., and Nomizu, K. (1962).Foundations of Differential Geometry, Wiley, New York.
Marinov, M. S., and Terentyev, M. V. (1979).Fortschritte der Physik,27, 511.
Roberts, P. H., and Ursell, H. D. (1960).Philosophical Transactions of the Royal Society of London A,252, 317.
Schulman, L. (1968).Physical Review,174, 1558.
Weyl, H. (1973).The Classical Groups, 8th ed., Princeton University Press, pp. 208, 216. Princeton, New Jersey.