Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tác động của sự suy thoái đồng cỏ đến các phân đoạn carbon và nitơ trong đất của đồng cỏ cao nguyên ở khu vực permafrost Tây Tạng
Tóm tắt
Kiến thức về ảnh hưởng của sự suy thoái đồng cỏ đối với carbon hữu cơ trong đất (SOC) và các phân đoạn nitơ (N) trong các loại đất permafrost trên Cao nguyên Tây Tạng còn hạn chế. Mục tiêu của nghiên cứu này là (1) đánh giá sự thay đổi trong nội dung SOC và N trong các phân đoạn mật độ dưới đồng cỏ Kobresia do sự suy thoái và (2) khám phá những đóng góp của sự thay đổi SOC và N trong các phân đoạn mật độ đối với sự thay đổi SOC và N trong tổng thể đất. Tác động của sự suy thoái đồng cỏ Kobresia đến các phân đoạn SOC và N được điều tra trong khu vực permafrost của Cao nguyên Tây Tạng. Một đồng cỏ bị suy thoái liên tục được xác định và phân loại thành ba loại theo độ bao phủ thực vật dựa trên mức độ suy thoái của chúng (tức là, độ bao phủ thực vật giảm từ 90% ± 6.6% xuống 70% ± 8.3% và 45% ± 8.7%). Các phân đoạn SOC và N được tách ra bằng phương pháp phân tách mật độ. Sự suy thoái đồng cỏ Kobresia làm giảm đáng kể nội dung và trữ lượng SOC và N trong đất. Nội dung SOC và N trong toàn bộ đất có mối tương quan dương với nội dung SOC và N trong các phân đoạn nhẹ và nặng (p < 0.001, tương ứng). Nội dung SOC và N có mối tương quan đáng kể với pH đất và các nội dung độ ẩm đất, đất sét, bùn và cát. Tỷ lệ SOC so với tổng N trong toàn bộ đất có mối tương quan dương với tỷ lệ SOC so với N trong các phân đoạn nặng (p < 0.001) nhưng không phải với tỷ lệ SOC so với N trong các phân đoạn nhẹ (p > 0.05). Khi sự suy thoái đồng cỏ diễn ra từ độ bao phủ thực vật 90% xuống 45%, trữ lượng SOC tại lớp đất 0–40 cm giảm 28.7% và trữ lượng N giảm 39.2% trong toàn bộ đất; tương ứng là 56.6% và 47.6% trong các phân đoạn nhẹ và 14.3% và 40.6% trong các phân đoạn nặng. Tỷ lệ suy giảm của N cao hơn so với SOC trong các phân đoạn nặng và toàn bộ đất. Tại tất cả các vị trí, hơn 80% trữ lượng SOC và N được bảo vệ trong các phân đoạn nặng. Những kết quả này cho thấy sự suy giảm không đồng nhất của SOC và N trong đất đã xuất hiện với sự suy thoái đồng cỏ Kobresia trong khu vực permafrost của Cao nguyên Tây Tạng. Sự suy thoái đồng cỏ Kobresia ảnh hưởng đến các phân đoạn SOC và N một cách khác nhau và do đó điều chỉnh chu trình carbon và N trong các loại đất permafrost trên Cao nguyên Tây Tạng.
Từ khóa
Tài liệu tham khảo
Babel W, Biermann T, Coners H, Falge E, Seeber E, Ingrisch J, Schleuß PM, Gerken T, Leonbacher J, Leipold T, Willinghöfer S, Schützenmeister K, Shibistova O, Becker L, Hafner S, Spielvogel S, Li X, Xu X, Sun Y, Zhang L, Yang Y, Ma Y, Wesche K, Graf HF, Leuschner C, Guggenberger G, Kuzyakov Y, Miehe G, Foken T (2014) Pasture degradation modifies the water and carbon cycles of the Tibetan highlands. Biogeosciences 11:6633–6656
Bingham AH, Cotrufo MF (2016) Organic nitrogen storage in mineral soil: implications for policy and management. Sci Total Environ 551:116–126
Calazans SOL, Morais VA, Scolforo JRS, Zinn YL, Mello JM, Mancini LT, Silva CA (2018) Soil organic carbon as a key predictor of N in forest soils of Brazil. J Soils Sed 18:1242–1251
Cao ZY, Wang Y, Li J, Zhang JJ, He NP (2016) Soil organic carbon contents, aggregate stability, and humic acid composition in different alpine grasslands in Qinghai-Tibet Plateau. J Mt Sci 13:2015–2027
de Graaff MA, van Groenigen KJ, Six J, Hungate B, van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Chang Biol 12:2077–2091
Dinakaran J, Chandra A, Chamoli KP, Deka J, Rao KS (2018) Soil organic carbon stabilization changes with an altitude gradient of land cover types in central Himalaya, India. Catena 170:374–385
Ding J, Li F, Yang G, Chen L, Zhang B, Liu L, Fang K, Qin S, Chen Y, Peng Y, Ji C, He H, Smith P, Yang Y (2016) The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores. Glob Chang Biol 22:2688–2701
Ding JZ, Chen LY, Ji CJ, Hugelius G, Li YN, Liu L, Qin SQ, Zhang BB, Yang GB, Li F, Fang K, Chen YL, Peng YF, Zhao X, He HL, Smith P, Fang JY, Yang YH (2017) Decadal soil carbon accumulation across Tibetan permafrost regions. Nat Geosci 10:420–424
Dlamini P, Chivenge P, Manson A, Chaplot V (2014) Land degradation impact on soil organic carbon and nitrogen stocks of sub-tropical humid grasslands in South Africa. Geoderma 235–236:372–381
Dong SK, Wen L, Li YY, Wang XX, Zhu L, Li XY (2012) Soil-quality effects of grassland degradation and restoration on the Qinghai-Tibetan Plateau. Soil Sci S Am J 76:2256–2264
Dong L, Zhang H, Wang L, Yu D, Yang F, Shi X, Saleem H, Saleem Akhtar M (2018) Irrigation with sediment-laden river water affects the soil texture and composition of organic matter fractions in arid and semi-arid areas of Northwest China. Geoderma 328:10–19
Dorfer C, Kuhn P, Baumann F, He JS, Scholten T (2013) Soil organic carbon pools and stocks in permafrost-affected soils on the Tibetan Plateau. PLoS One 8(2):e57024. https://doi.org/10.1371/journal.pone.0057024
Dutta K, Schuur EAG, Neff JC, Zimov SA (2006) Potential carbon release from permafrost soils of Northeastern Siberia. Glob Chang Biol 12:2336–2351
Evgrafova A, de la Haye TR, Haase I, Shibistova O, Guggenberger G, Tananaev N, Sauheitl L, Spielvogel S (2018) Small-scale spatial patterns of soil organic carbon and nitrogen stocks in permafrost-affected soils of northern Siberia. Geoderma 329:91–107
Eze S, Palmer SM, Chapman PJ (2018) Soil organic carbon stock and fractional distribution in upland grasslands. Geoderma 314:175–183
Gao J, Zhang X, Lei G, Wang G (2013) Soil organic carbon and its fractions in relation to degradation and restoration of wetlands on the Zoigê Plateau, China. Wetlands 34:235–241
Gao Y, Dang P, Zhao Z (2017) Effects of afforestation on soil carbon and its fractions: a case study from the Loess Plateau, China. J Forestry Res 29:1291–1297
Gentsch N, Mikutta R, Alves RJE, Barta J, Capek P, Gittel A, Hugelius G, Kuhry P, Lashchinskiy N, Palmtag J, Richter A, Santruckova H, Schnecker J, Shibistova O, Urich T, Wild B, Guggenberger G (2015) Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic. Biogeosciences 12:4525–4542
Giannetta B, Plaza C, Vischetti C, Cotrufo MF, Zaccone C (2018) Distribution and thermal stability of physically and chemically protected organic matter fractions in soils across different ecosystems. Biol Fert Soils 54:671–681
Gong W, Yan X, Wang J, Hu T, Gong Y (2009) Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat–maize cropping system in northern China. Geoderma 149:318–324
Gregorich EG, Ellert BH (1993) Light fraction and macroorganic matter in mineral soils. In: Carer MR (ed) Soil sampling and methods of analysis. Canadian Society of Soil Science. Lewis Publishers, Division of CRC Press, Boca Ration, pp 397–405
Groppo JD, Lins SRM, Camargo PB, Assad ED, Pinto HS, Martins SC, Salgado PR, Evangelista B, Vasconcellos E, Sano EE, Pavao E, Luna R, Martinelli LA (2015) Changes in soil carbon, nitrogen, and phosphorus due to land-use changes in Brazil. Biogeosciences 12:4765–4780
Hopping KA, Yangzong CR, Klein JA (2016) Local knowledge production, transmission, and the importance of village leaders in a network of Tibetan pastoralists coping with environmental change. Ecol Soc 21:25. https://doi.org/10.5751/ES-08009-210125
Hopping KA, Knapp AK, Dorji T, Klein JA (2018) Warming and land use change concurrently erode ecosystem services in Tibet. Glob Chang Biol 24:5534–5548
Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD, O’Donnell JA, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J, Kuhry P (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–6593
Huo L, Chen Z, Zou Y, Lu X, Guo J, Tang X (2013) Effect of Zoige alpine wetland degradation on the density and fractions of soil organic carbon. Ecol Eng 51:287–295
IPCC (2013) Working group I contribution to the IPCC fifth assessment report, climate change 2013: the physical science basis
Jin X, Wang S, Zhou Y (2008) Dynamic of organic matter in the heavy fraction after abandonment of cultivated wetlands. Biol Fert Soils 44:997–1001
Kaiser K, Miehe G, Barthelmes A, Ehrmann O, Scharf A, Schult M, Schlutz F, Adamczyk S, Frenzel B (2008) Turf-bearing topsoils on the central Tibetan plateau, China: pedology, botany, geochronology. Catena 73:300–311
Koven CD, Schuur EA, Schadel C, Bohn TJ, Burke EJ, Chen G, Chen X, Ciais P, Grosse G, Harden JW, Hayes DJ, Hugelius G, Jafarov EE, Krinner G, Kuhry P, Lawrence DM, MacDougall AH, Marchenko SS, McGuire AD, Natali SM, Nicolsky DJ, Olefeldt D, Peng S, Romanovsky VE, Schaefer KM, Strauss J, Treat CC, Turetsky M (2015) A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback. Phil Trans R Soc A 373:20140423. https://doi.org/10.1098/rsta.2014.0423
Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42(9):1363–1371
Lehnert LW, Wesche K, Trachte K, Reudenbach C, Bendix J (2016) Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures. Sci Rep 6:24367. https://doi.org/10.1038/srep24367
Leifeld J, Fuhrer J (2009) Long-term management effects on soil organic matter in two cold, high-elevation grasslands: clues from fractionation and radiocarbon dating. Eur J Soil Sci 60:230–239
Leifeld J, Kogel-Knabner I (2005) Soil organic matter fractions as early indicators for carbon stock changes under different land-use? Geoderma 124:143–155
Li Y-Y, Dong S-K, Wen L, Wang X-X, Wu Y (2014) Soil carbon and nitrogen pools and their relationship to plant and soil dynamics of degraded and artificially restored grasslands of the Qinghai–Tibetan Plateau. Geoderma 213:178–184
Li J, Wen Y, Li X, Li Y, Yang X, Lin Z, Song Z, Cooper JM, Zhao B (2018a) Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil Till Res 175:281–290
Li J, Yan D, Pendall E, Pei J, Noh NJ, He J-S, Li B, Nie M, Fang C (2018b) Depth dependence of soil carbon temperature sensitivity across Tibetan permafrost regions. Soil Biol Biochem 126:82–90
Liu S, Schleuss P-M, Kuzyakov Y (2017) Carbon and nitrogen losses from soil depend on degradation of Tibetan Kobresia pastures. Land Degrad Dev 28:1253–1262
Liu SB, Zamanian K, Schleuss PM, Zarebanadkouki M, Kuzyakov Y (2018) Degradation of Tibetan grasslands: consequences for carbon and nutrient cycles. Agric Ecosyst Environ 252:93–104
Liu X, Zhang W, Wu M, Ye Y, Wang K, Li D (2019) Changes in soil nitrogen stocks following vegetation restoration in a typical karst catchment. Land Degrad Dev 30:60–72
McHunu C, Chaplot V (2012) Land degradation impact on soil carbon losses through water erosion and CO2 emissions. Geoderma 177–178:72–79
Miehe G, Mlehe S, Kaiser K, Liu JQ, Zhao XQ (2008) Status and dynamics of Kobresia pygmaea ecosystem on the Tibetan plateau. Ambio 37:272–279
Mou XM, Li XG, Zhao N, Yu YW, Kuzyakov Y (2018) Tibetan sedges sequester more carbon belowground than grasses: a 13C labeling study. Plant Soil 426(1–2):287–298
Mueller CW, Rethemeyer J, Kao-Kniffin J, Loppmann S, Hinkel KM, Bockheim J (2015) Large amounts of labile organic carbon in permafrost soils of northern Alaska. Glob Chang Biol 21:2804–2817
Natali SM, Schuur EAG, Webb EE, Pries CEH, Crummer KG (2014) Permafrost degradation stimulates carbon loss from experimentally warmed tundra. Ecology 95:602–608
Peng F, Xue X, You QG, Huang CH, Dong SY, Liao J, Duan HC, Tsunekawa A, Wang T (2018) Changes of soil properties regulate the soil organic carbon loss with grassland degradation on the Qinghai-Tibet Plateau. Ecol Indic 93:572–580
Piñeiro G, Paruelo JM, Oesterheld M, Jobbágy EG (2010) Pathways of grazing effects on soil organic carbon and nitrogen. Rangeland Ecol Manag 63(1):109–119
Ping CL, Jastrow JD, Jorgenson MT, Michaelson GJ, Shur YL (2015) Permafrost soils and carbon cycling. Soil 1(1):147–171
Ramnarine R, Voroney RP, Dunfield KE, Wagner-Riddle C (2018) Characterization of the heavy, hydrolysable and non-hydrolysable fractions of soil organic carbon in conventional and no-tillage soils. Soil Till Res 181:144–151
Schadel C, Bader MKF, Schuur EAG, Biasi C, Bracho R, Capek P, De Baets S, Diakova K, Ernakovich J, Estop-Aragones C, Graham DE, Hartley IP, Iversen CM, Kane ES, Knoblauch C, Lupascu M, Martikainen PJ, Natali SM, Norby RJ, O’Donnell JA, Chowdhury TR, Santruckova H, Shaver G, Sloan VL, Treat CC, Turetsky MR, Waldrop MP, Wickland KP (2016) Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat Clim Chang 6:950–954
Schipper LA, Sparling GP (2011) Accumulation of soil organic C and change in C:N ratio after establishment of pastures on reverted scrubland in New Zealand. Biogeochemistry 104(1–3):49–58
Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56
Schuur EAG, Abbott B, Network PC (2011) High risk of permafrost thaw. Nature 480(7375):32–33
Schuur EAG, McGuire AD, Schadel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature 520(7546):171–179
Shang W, Zhao L, Wu X-d, Y-q L, G-y Y, Y-h Z, Qiao Y-p (2015) Soil organic matter fractions under different vegetation types in permafrost regions along the Qinghai-Tibet Highway, north of Kunlun Mountains, China. J Mt Sci 12:1010–1024
Shang W, Wu XD, Zhao L, Yue GY, Zhao YH, Qiao YP, Li YQ (2016) Seasonal variations in labile soil organic matter fractions in permafrost soils with different vegetation types in the central Qinghai-Tibet Plateau. Catena 137:670–678
Shi X-M, Li XG, Li CT, Zhao Y, Shang ZH, Ma Q (2013) Grazing exclusion decreases soil organic C storage at an alpine grassland of the Qinghai–Tibetan Plateau. Ecol Eng 57:183–187
Singh P, Benbi DK (2018) Soil organic carbon pool changes in relation to slope position and land-use in Indian lower Himalayas. Catena 166:171–180
Six J, Callewaert P, Lenders S, De Gryze S, Morris SJ, Gregorich EG, Paul EA, Paustian K (2002) Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Sci Soc Am J 66:1981–1987
Song B, Niu S, Zhang Z, Yang H, Li L, Wan S (2012) Light and heavy fractions of soil organic matter in response to climate warming and increased precipitation in a temperate steppe. PLoS One 7:e33217
Song B, Niu S, Li L, Zhang L, Yu G (2014) Soil carbon fractions in grasslands respond differently to various levels of nitrogen enrichments. Plant Soil 384:401–412
Springob G, Kirchmann H (2003) Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils. Soil Biol Biochem 35:629–632
Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, VdRd C, Singh K, Wheeler I, Abbott L, Angers DA, Baldock J, Bird M, Brookes PC, Chenu C, Jastrow JD, Lal R, Lehmann J, O’Donnell AG, Parton WJ, Whitehead D, Zimmermann M (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99
Tan Z, Lal R, Owens L, Izaurralde R (2007) Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil Till Res 92:53–59
Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23:GB2023. https://doi.org/10.1029/2008GB003327
ter Braak CJF, Smilauer P (2002) CANOCO reference manual and User’s guide to Conoco for Windows: software for canonical community ordination (version 4.5). Micro-Computer Power, Ithaca
Vogel J, Schuur EAG, Trucco C, Lee H (2009) Response of CO2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development. J Geophys Res 114:G04018. https://doi.org/10.1029/2008JG000901
Wang GX, Li YS, Wang YB, Wu QB (2008) Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai-Tibet Plateau, China. Geoderma 143:143–152
Wang CT, Long RJ, Wang QL, Jing ZC, Shi JJ (2009a) Changes in plant diversity, biomass and soil C in alpine meadows at different degradation stages in the headwater region of three rivers, China. Land Degrad Dev 20:187–198
Wang W, Wang Q, Lu Z (2009b) Soil organic carbon and nitrogen content of density fractions and effect of meadow degradation to soil carbon and nitrogen of fractions in alpine Kobresia meadow. Sci China Ser D 52:660–668
Wang X, Dong S, Yang B, Li Y, Su X (2014) The effects of grassland degradation on plant diversity, primary productivity, and soil fertility in the alpine region of Asia’s headwaters. Environ Monit Assess 186:6903–6917
Whalen JK, Bottomley PJ, Myrold DD (2000) Carbon and nitrogen mineralization from light- and heavy-fraction additions to soil. Soil Biol Biochem 32:1345–1352
Whiteman G, Hope C, Wadhams P (2013) Vast costs of Arctic change. Nature 499:401–403
Wiesmeier M, Urbanski L, Hobley E, Lang B, von Lützow M, Marin-Spiotta E, van Wesemael B, Rabot E, Ließ M, Garcia-Franco N, Wollschläger U, Vogel H-J, Kögel-Knabner I (2019) Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales. Geoderma 333:149–162
Wu Q, Zhang T, Liu Y (2012) Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010. Cryosphere 6(3):607–612
Wu G-L, Ren G-H, Dong Q-M, Shi J-J, Wang Y-L (2014) Above- and belowground response along degradation gradient in an alpine grassland of the Qinghai-Tibetan Plateau. CLEAN - Soil Air Water 42:319–323
Wu X, Zhao L, Hu G, Liu G, Li W, Ding Y (2018) Permafrost and land cover as controlling factors for light fraction organic matter on the southern Qinghai-Tibetan plateau. Sci Total Environ 613–614:1165–1174
Xu X, Shi Z, Li D, Rey A, Ruan H, Craine JM, Liang J, Zhou J, Luo Y (2016) Soil properties control decomposition of soil organic carbon: results from data-assimilation analysis. Geoderma 262:235–242
Yang Y, Fang J, Tang Y, Ji C, Zheng C, He J, Zhu B (2008) Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob Chang Biol 14:1592–1599
Yang M, Nelson FE, Shiklomanov NI, Guo D, Wan G (2010) Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth-Sci Rev 103:31–44
Yang Z, Zhu Q, Zhan W, Xu Y, Zhu E, Gao Y, Li S, Zheng Q, Zhu D, He Y, Peng C, Chen H (2018) The linkage between vegetation and soil nutrients and their variation under different grazing intensities in an alpine meadow on the eastern Qinghai-Tibetan Plateau. Ecol Eng 110:128–136
Yeasmin S, Singh B, Johnston CT, Sparks DL (2017) Organic carbon characteristics in density fractions of soils with contrasting mineralogies. Geochim Cosmochim Acta 218:215–236
You Q, Xue X, Peng F, Xu M, Duan H, Dong S (2014) Comparison of ecosystem characteristics between degraded and intact alpine meadow in the Qinghai-Tibetan Plateau, China. Ecol Eng 71:133–143
Yuan Z-Q, Yu K-L, Guan X-K, Fang C, Li M, Shi X-Y, Li F-M (2016) Medicago sativa improves soil carbon sequestration following revegetation of degraded arable land in a semi-arid environment on the Loess Plateau, China. Agric Ecosyst Environ 232:93–100
Yuan Z-Q, Jiang X-J, Liu G-J, Jin H-J, Chen J, Wu Q-B (2019) Responses of soil organic carbon and nutrient stocks to human-induced grassland degradation in a Tibetan alpine meadow. Catena 178:40–48
Zhong Y, Yan W, Shangguan Z (2015) Soil carbon and nitrogen fractions in the soil profile and their response to long-term nitrogen fertilization in a wheat field. Catena 135:38–46
Zhu MY, Tan SD, Dang HS, Zhang QF (2011) Rare earth elements tracing the soil erosion processes on slope surface under natural rainfall. J Environ Radioactiv 102:1078–1084