Past achievements and future challenges in the development of optically transparent electrodes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ginley, D. S., Hosono, H. & Paine, D. C. Handbook of Transparent Conductors (Springer, 2010).
Wright, A. W. On the production of transparent metallic films by the electrical discharge in exhausted tubes. Am. J. Sci. 3rd Series 13, 49–55 (1877).
Bädeker, K. Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen. Ann. Phys. 22, 749–766 (1907).
Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Tech. 20, S35–S44 (2005).
Wagner, C. Fehlordnungserscheinungen in kristallisierten polaren Verbindungen als Grundlage für Elektronen- und Ionenleitung. Z. Elektrochem. 39, 543–545 (1933).
Holland, L. & Siddall, G. The properties of some reactively sputtered metal oxide films. Vacuum 3, 375–391 (1953).
Aitchison, R. E. Transparent semiconducting oxide films. Austr. J. Appl. Phys. 5, 10–17 (1954).
Fuchs, K. The conductivity of thin metallic films according to the electron theory of metals. Proc. Camb. Phil. Soc. 11, 100–108 (1938).
Mayadas, A. F. & Shatzkes, M. Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys. Rev. B 1, 1382–1389 (1970).
Preston, J. S. Constitution and mechanism of the selenium rectifier photocell. Proc. R. Soc. Lond. A 202, 449–466 (1950).
McMaster, H. A. Electrically conducting films and method of application. UK patent (1947).
van Boort, H. J. J. & Groth, R. Low-pressure sodium lamps with indium oxide filters. Phil. Tech. Rev. 29, 47–48 (1968).
Köstlin, H., Jost, R. & Lems, W. Optical and electrical properties of doped In2O3 films. Phys. Stat. Sol. A 29, 87–93 (1975).
Hamberg, I. & Granqvist, C. G. Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60, R123–R159 (1986).
Szczyrbowski, J., Bräuer, G., Ruske, M., Schilling, H. & Zmelty, A. New low emissivity coating based on TwinMag sputtered TiO2 and Si3N4 layers. Thin Solid Films 351, 254–259 (1999).
Grosse, P., Hertling, R. & Müggenburg, T. Design of low emissivity systems based on a three-layer coating. J. Non-Cryst. Solids 218, 38–43 (1997).
Riedel, S., Röber, J. & Geßner, T. Electrical properties of copper films produced by MOCVD. Microelectr. Eng. 33, 165–172 (1997).
Granqvist, C. G. Transparent conductors for solar energy and energy efficiency: a broad-brush picture. Int. J. Nanotech. 6, 785–798 (2009).
Betz, U., Olsson, M. K., Marthy, J., Escola, M. F. & Atamny, F. Thin films engineering of indium tin oxide: large area flat panel displays application. Surf. Coat. Techn. 200, 5751–5759 (2006).
Chopra, K. L., Major, S. & Pandya, D. K. Transparent conductors: a status review. Thin Solid Films 102, 1–46 (1983).
Fortunato, E., Ginley, D., Hosono, H. & Paine, D. C. Transparent conductive oxides for photovoltaics. MRS Bull. 32, 242–247 (2007).
Klenk, R. in Transparent Conductive Zinc Oxide: Basics and Application in Thin Film Solar Cells (eds Ellmer, K., Klein, A. & Rech, B.) Ch 9 (Springer, 2008).
Edwards, P. P., Porch, A., Jones, M. O., Morgan, D. V. & Perks, R. M. Basic materials physics of transparent conducting oxides. Dalton Trans. 19, 2995–2302 (2004).
Ellmer, K. Resistivity of polycrystalline zinc oxide films: current status and physical limit. J. Phys. D: Appl. Phys. 34, 3097–3108 (2001).
Hosono, H., Kikuchi, N., Ueda, N., Kawazoe, H. & Shimidzu, K. Amorphous transparent electroconductor 2CdOGeO2: conversion of amorphous insulating cadmium germanate by ion implantation. Appl. Phys. Lett. 67, 2663–2665 (1995).
Narushima, S., Orita, M., Hirano, M. & Hosono, H. Electronic structure and transport properties in the transparent amorphous oxide semiconductor 2CdOGeO2 . Phys. Rev. B 66, 035203 (2002).
Hosono, H. Ionic amorphous oxide semiconductors: material design, carrier transport, and device application. J. Non-Cryst. Solids 352, 851–858 (2006).
Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).
Taylor, M. P. et al. The remarkable thermal stability of amorphous In-Zn-O transparent conductors. Adv. Func. Mater. 18, 3169–3178 (2008).
Jeong, J. K. The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond. Sci. Tech. 26, 034008 (2011).
Furubayashi, Y. et al. A transparent metal: Nb-doped anatase TiO2 . Appl. Phys. Lett. 86, 252101 (2005).
Kumar, A. & Zhou, C. The race to replace tin-doped indium oxide: which material will win? Nano Lett. 4, 11–14 (2010).
Eritt, M., May, C., Leo, K., Toerker, M. & Radehaus, C. OLED manufacturing for large area lighting applications. Thin Solid Films 518, 3042–3045 (2010).
Bender, M. et al. Dependence of film composition and thickness on optical and electrical properties of ITO-metal-ITO multilayers. Thin Solid Films 326, 67–71 (1998).
Lee, J.-Y., Connor, S. T., Cui, Y. & Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689–692 (2008).
Kang, M.-G. & Guo, L. J. Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Adv. Mater. 19, 1391–1396 (2007).
De, S., King, P. J., Lyons, P. E., Khan, U. & Coleman, J. N. Size effects and the problem with percolation in nanostructured transparent conductors. ACS Nano 4, 7064–7072 (2010).
Pramanik, D., Sievers, A. J. & Silsbee, R. H. The spectral selectivity of conducting micromeshes. Sol. Energ. Mater. 2, 81–91 (1979).
Kang, M.-G., Xu, T., Park, H. J., Luo, X. & Guo, L. J. Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes. Adv. Mater. 22, 4378–4383 (2010).
Ahn, S. H. & Guo, L. J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3, 2304–2310 (2009).
Hu, L., Wu, H. & Cui, Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull. 36, 760–765 (2011).
Kang, M.-G., Park, H. J., Ahn, S. H., Xu, T. & Guo, L. J. Toward low-cost, high-efficiency, and scalable organic solar cells with transparent metal electrode and improved domain morphology. IEEE J. Sel. Top. Quant. Electron. 16, 1807–1820 (2010).
Hu, L., Hecht, D. S. & Grüner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4, 2513–2517 (2004).
Doherty, E. M. et al. The spatial uniformity and electromechanical stability of transparent, conductive films of single walled nanotubes. Carbon 47, 2466–2473 (2009).
Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol. 5, 574–578 (2010).
Kim, Y. H. et al. Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Func. Mater. 21, 1076–1081 (2011).
de Heer, W. A. Epitaxial graphene: a new electronic material for the 21st century. MRS Bull. 36, 632–639 (2011).
Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).
Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. & Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x . J. Chem. Soc. Chem. Comm. 578–580 (1977).
Groenendaal, L. B., Jonas, F., Freitag, D., Pielartzik, H. & Reynolds, J. R. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mat. 12, 481–494 (2000).
Manifacier, J. C. Thin metallic oxides as transparent conductors. Thin Solid Films 90, 297–308 (1982).
Hartnagel, H. L., Dawar, A. L., Jain, A. K. & Jagadish, C. Semiconducting Transparent Thin Films (Institute of Physics, 1995).
Ellmer, K., Klein, A. & Rech, B. Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells. 443 (Springer, Berlin, 2008).
Sun, Y., Wu, Q. & Shi, G. Graphene based new energy materials. Energ. Env. Sci. 4, 1113–1132 (2011).
Hecht, D. S., Hu, L. & Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mat. 23, 1482–1513 (2011).
Pankove, J. I. Optical Processes in Semiconductors Ch 1 (Dover, 1971).
Hass, J., de Heer, W. A. & Conrad, E. H. The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Mat. 20, 323202 (2008).
Peelaers, H., Kioupakis, E. & de Walle, C. G. V. Fundamental limits on optical transparency of transparent conducting oxides: free-carrier absorption in SnO2 . Appl. Phys. Lett. 100, 011914 (2012).
Glover, R. E. & Tinkham, M. Conductivity of superconducting films for photon energies between 0.3 and 40 kTc . Phys. Rev. 108, 243–256 (1957).
Barnes, T. M. et al. Comparing the fundamental physics and device performance of transparent, conductive nanostructred networks with conventional transparent oxides. Adv. Energ. Mat. 2, 353–360 (2012).
Ohring, M. The Materials Science of Thin Films Ch 3, 4 (Academic, 1992).
Szyszka, B. in Transparent Conductive Zinc Oxide: Basics and Application in Thin Film Solar Cells (eds Ellmer, K., Klein, A. & Rech, B.) 187–233 (Springer, 2008).
Fay, S. & Shah, A. in Transparent Conductive Zinc Oxide: Basics and Application in Thin Film Solar Cells (eds Ellmer, K., Klein, A. & Rech, B.) 235–302 (Springer, 2008).
Arnaud, A. Industrial production of coated glass: future trend for expanding needs. J. Non-Cryst. Solids 218, 12–18 (1997).
Sherman, A. Atomic Layer Deposition for Nanotechnology Ch 1 (Ivoryton, 2008).
Lee, B. D.-J. et al. Structural and electrical properties of atomic layer deposited Al-doped ZnO films. Adv. Func. Mat. 21, 448–455 (2011).
De, S. et al. Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3, 1767–1774 (2009).
Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Phys. 2, 620–625 (2006).
Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–201 (2005).
Suk, J. W. et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5, 6916–6924 (2011).
Xu, M., Fujita, D., Sagisaka, K., Watanabe, E. & Hanagata, N. Production of extended single-layer graphene. ACS Nano 5, 1522–1528 (2011).
Biswas, C. & Lee, Y. H. Graphene versus carbon nanotubes in electronic devices. Adv. Func. Mat. 21, 3806–3826 (2011).
Tsai, T.-H. & Wu, Y.-F. Wet etching mechanisms of ITO films in oxalic acid. Microelectr. Eng. 83, 536–541 (2006).
Greiner, D., Papathanasiou, N., Pfug, A., Ruske, F. & Klenk, R. Influence of damp heat on the optical and electrical properties of Al-doped zinc oxide. Thin Solid Films 517, 2291–2294 (2009).
Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).
Szczyrbowski, J., Dietrich, A. & Hartig, K. Bendable silver-based low emissivity coatings on glass. Sol. Energ. Mat. 19, 43–53 (1989).
Fraser, D. B. & Cook, H. D. Highly conductive, transparent films of sputtered In2–xSnxO3–y . J. Electrochem. Soc. 119, 1368–1374 (1972).
Martínez, L., Ghosh, D. S., Giurgola, S., Vergani, P. & Pruneri, V. Stable transparent Ni electrodes. Opt. Mat. 31, 1115–1117 (2009).
Dimopoulos, T., Radnoczi, G. Z., Pécz, B. & Brückl, H. Characterization of ZnO:Al/Au/ZnO:Al trilayers for high performance transparent conducting electrodes. Thin Solid Films 519, 1470–1474 (2010).
Gillham, E. J., Preston, J. S. & Wiliams, B. E. A study of transparent, highly conductive gold films. Phil. Mag. 46, 1051–1071 (1955).
Holland, L. & Siddall, G. Heat-reflecting windows using gold and bismuth oxide films. Br. J. Appl. Phys. 9, 359–361 (1958).
Ellmer, K. in Transparent Conductive Zinc Oxide: Basics and Application in Thin Film Solar Cells (eds Ellmer, K., Klein, A. & Rech, B.) 44 (Springer, 2008).
Klaassen, D. B. M. A unified mobility model for device simulation-i: Model equations and concentration dependence. Solid-State Electr. 35, 953–959 (1992).
Ellmer, K. in Handbook of Transparent Conductors (eds Ginley, D. S., Hosono, H. & Paine, D. C.) 193–264 (Springer, 2010).