Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nhắm mục tiêu thụ động của micelle copolymer diblock nhạy cảm với nhiệt đến phổi: tổng hợp và đặc tính của poly(N-isopropylacrylamide)-block-poly(ε-caprolactone)
Tóm tắt
Các copolymer poly(N-isopropylacrylamide)-block-poly(ε-caprolactone) (PNiPAAm-b-PCL) amphiphilic đã được tổng hợp thông qua polymer hóa mở vòng để tạo ra micelle nhạy cảm với nhiệt như những nanocarrier cho hình ảnh sinh học và dẫn truyền carboplatin. Nồng độ micelle quan trọng đã tăng từ 1,8 lên 3,5 mg/l theo sự giảm chiều dài chuỗi PNiPAAm. Các copolymer cho thấy nhiệt độ dung dịch quan trọng thấp (LCST) giữa 33 và 40°C. Các copolymer tự hội tụ để hình thành các hạt hình cầu có đường kính từ 146–199 nm. Carboplatin trong micelle biểu thị sự giải phóng chậm hơn ở 37°C so với ở 25°C do sự hình thành lớp gel trên vỏ micelle vượt quá LCST. Các micelle chứa thuốc nhuộm hoặc carboplatin đã được tiêm tĩnh mạch vào chuột (rat) để tiến hành hình ảnh sinh học in vivo và phân phối thuốc trong cơ thể. Hồ sơ hình ảnh sinh học cho thấy sự tích lũy đáng kể của micelle trong phổi. Các micelle có thể giảm thiểu khả năng nhận diện thuốc nhuộm của hệ thống lưới tĩnh mạch nội mô (RES). Phân phối thuốc in vivo cho thấy sự tích lũy carboplatin trong phổi cải thiện từ 2,5 lên 3,4 μg/mg nhờ các micelle so với dung dịch đối chứng. Sự tích lũy carboplatin ở tim và thận đã giảm sau khi được bao bọc bởi các micelle. Nghiên cứu này hỗ trợ tiềm năng của micelle PNiPAAm-b-PCL để nhắm mục tiêu thụ động đến phổi và giảm thiểu việc hấp thụ RES và các tác dụng phụ có thể xảy ra.
Từ khóa
#micelle nhạy cảm với nhiệt #poly(N-isopropylacrylamide)-block-poly(ε-caprolactone) #hình ảnh sinh học #phân phối thuốc #carboplatinTài liệu tham khảo
Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27:2569–2589
Cabral H, Kataoka K (2014) Progress of drug-loaded polymeric micelles into clinical studies. J Control Release 190:465–476
Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J (2013) The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed Nanotechnol Biol Med 9:1–14
Dash TK, Konkimalla VB (2012) Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release 158:15–33
Couet F, Rajan N, Mantovani D (2007) Macromolecular biomaterials for scaffold-based vascular tissue engineering. Macromol Biosci 7:701–718
Li M, Pan P, Shan G, Bao Y (2015) Thermoresponsive poly(ε-caprolactone)-graft-poly(N-isopropylacrylamide) graft copolymers prepared by a combination of ring-opening polymerization and sequential azide-alkyne click chemistry. Polym Int 64:389–396
Rösler A, Vandermeulen GWM, Klok HA (2012) Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev 64(Suppl):270–279
Dai XH, Jin H, Yuan SS, Pan JM, Wang XH, Yan YS et al (2014) Synthesis and characterization of thermosensitive, star-shaped poly(ε-caprolactone)-block-poly(N-isopropylacrylamide) with porphyrin-core for photodynamic therapy. J Polym Res 21:412
Mishra AK, Vishwakarma NK, Patel VK, Biswas CS, Paira TK, Mandal TK et al (2014) Synthesis, characterization, and solution behavior of well-defined double hydrophilic linear amphiphilic poly(N-isopropylacrylamide)-b-poly(ε-caprolactone)-b-poly(N-isopropylacrylamide) triblock copolymers. Colloid Polym Sci 292:1405–1418
Choi C, Chae SY, Nah JW (2006) Thermosensitive poly(N-isopropylacrylamide)-b-poly(ε-caprolactone) nanoparticles for efficient drug delivery system. Polymer 47:4571–4580
Choi C, Jang MK, Nah JW (2007) Preparation and characterization of nanoparticles using poly(N-isopropylacrylamide)-b-poly(ε-caprolactone) and poly(ethylene glycol)-poly(ε-caprolactone) block copolymers with thermosensitive function. Macromol Res 15:623–632
Dash TK, Konkimalla VB (2012) Polymeric modification and its implication in drug delivery: poly-ε-caprolactone (PCL) as a model polymer. Mol Pharm 9:2365–2379
Chen WQ, Wei H, Li SL, Feng J, Nie J, Zhang XZ et al (2008) Fabrication of star-shaped, thermo-sensitive poly(N-isopropylacrylamide)-cholic acid-poly(ε-caprolactone) copolymers and their self-assembled micelles as drug carriers. Polymer 49:3965–3972
Lee RS, Chen WH, Huang YT (2010) Synthesis and characterization of dual stimuli-responsive block copolymers based on poly(N-isopropylacrylamide)-b-poly(pseudoamino acid). Polymer 51:5942–5951
Lee RS, Wu KP (2011) Synthesis and characterization of temperature-sensitive block-graft PNiPAAm-b-(CPαN3CL-g-alkyne) copolymers by ring-opening polymerization and click reaction. J Polym Sci A Polym Chem 49:3163–3173
Lee RS, Wang SW, Li YC, Fang JY (2015) Synthesis and characterization of thermo-responsive and photo-cleavable block copolymers as nanocarriers. RSC Adv 5:497–512
Cheng Y, Hao J, Lee LA, Biewer MC, Wang Q, Stefan MC (2012) Thermally controlled release of anticancer drug from self-assembled γ-substituted amphiphilic poly(ε-caprolactone) micellar nanoparticles. Biomacromolecules 13:2163–2173
Loh XJ, Wu YL, Seow WTJ, Norimzan MNI, Zhang ZX, Xu FJ et al (2008) Micellization and phase transition behavior of thermosensitive poly(N-isopropylacrylamide)-poly(ε-caprolactone)-poly(N-isopropylacrylamide) triblock copolymers. Polymer 49:5084–5094
FitzGerald PA, Gupta S, Wood K, Perrier S, Warr GG (2014) Temperature- and pH-responsive micelles with collapsible poly(N-isopropylacrylamide) headgroups. Langmuir 30:7986–7992
Wei H, Cheng C, Chang C, Chen WQ, Cheng SX, Zhang XZ et al (2008) Synthesis and applications of shell cross-linked thermoresponsive hybrid micelles based on poly(N-isopropylacrylamide)-co-3-(trimethoxysilyl)propyl methacrylate-b-poly(methyl methacrylate). Langmuir 24:4564–4570
Duan Z, Zhang L, Wang H, Han B, Liu B, Kim I (2014) Synthesis of poly(N-isopropylacrylamide)-b- poly(ε-caprolactone) and its inclusion compound of β-cyclodextrin. React Funct Polym 82:47–51
Wei H, Cheng SX, Zhang XZ, Zhuo RX (2009) Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog Polym Sci 34:893–910
Wei H, Zhang X, Cheng C, Cheng SX, Zhuo RX (2007) Self-assembled, thermosensitive micelles of a star block copolymer based on PMMA and PNIPAAm for controlled drug delivery. Biomaterials 28:99–107
Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798
Hsieh PW, Wen CJ, Yu HP, Aljuffali IA, Huang YH, Fang JY (2014) Nanostructured lipid carriers containing a high percentage of a Pluronic copolymer increase the biodistribution of novel PDE4 inhibitors for the treatment of traumatic hemorrhage. J Biomed Nanotechnol 10:1520–1535
Steichen SD, Caldovera-Moore M, Peppas NA (2013) A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48:416–427
Kao HW, Chan CJ, Chang YC, Hsu YH, Lu M, Wang JSJ et al (2013) A pharmacokinetics study of radiolabeled micelles of a poly(ethylene glycol-block-poly(caprolactone) copolymer in a colon carcinoma-bearing mouse model. Appl Radiat Isot 80:88–94
Mirzayan MJ, Probst C, Samii M, Krettek C, Gharabaghi A, Pape HC et al (2012) Histopathological features of the brain, liver, kidney and spleen following an innovative polytrauma model of the mouse. Exp Toxicol Pathol 64:133–139
Anselmo AC, Gupta V, Zern BJ, Pan D, Zakrewsky M, Muzykantov V et al (2013) Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano 7:11129–11137
Abulateefeh SR, Spain SG, Aylott JW, Chan WC, Garnett MC, Alexander C (2011) Thermoresponsive polymer colloids for drug delivery and cancer therapy. Macromol Biosci 11:1722–1734
Akimoto J, Nakayama M, Sakai K, Okano T (2010) Thermally controlled intracellular uptake system of polymeric micelles possessing poly(N-isopropylacrylamide)-based outer coronas. Mol Pharm 7:926–935
Du JZ, Sun TM, Song WJ, Wu J (2010) A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery. J Angew Chem Int Ed 49:3621–3626
Litvak-Greenfeld D, Benhar I (2012) Risks and untoward toxicities of antibody-based immunoconjugates. Adv Drug Deliv Rev 64:1782–1799
Pastore S, Lulli D, Girolomoni G (2014) Epidermal growth factor receptor signaling in keratinocyte biology: implications for skin toxicity of tyrosine kinase inhibitors. Arch Toxicol 88:1189–1203
Vlaar APJ, Juffermans NP (2013) Transfusion-related acute lung injury: a clinical review. Lancet 382:984–994