Passive droplet generation in aqueous two-phase systems with a variable-width microchannel

Soft Matter - Tập 15 Số 23 - Trang 4647-4655
Daeho Choi1,2,3,4,5, Eunjeong Lee3,6,4,5, Sung‐Jin Kim7,4,8,9, Minsub Han3,6,4,5
1Department of Research and Development
2Department of Research and Development, Hanil Knuckle Press Co. Ltd, Incheon, Korea
3Incheon
4Korea
5Mechanical Engineering, Incheon National University, Incheon, Korea
6Incheon National University
7Konkuk University
8Mechanical Engineering, Konkuk University, Seoul, Korea
9Seoul

Tóm tắt

Passive droplet generation for an aqueous two-phase system (ATPS) was performed with a fracture-based variable microchannel.

Từ khóa


Tài liệu tham khảo

H. Walter , Partitioning in aqueous two-phase system: theory, methods, uses, and applications to biotechnology , Elsevier , 2012

R. Hatti-Kaul , Aqueous Two-Phase Systems: Methods and Protocols , Humana Press , 2000

Mazzola, 2008, J. Chem. Technol. Biotechnol., 83, 143, 10.1002/jctb.1794

Nam, 2005, Biomed. Microdevices, 7, 189, 10.1007/s10544-005-3025-6

Meagher, 2008, Lab Chip, 8, 527, 10.1039/b716462a

Zimmermann, 2017, Biotechnol. J., 12, 1600587, 10.1002/biot.201600587

Diamond, 1990, AIChE J., 36, 1017, 10.1002/aic.690360707

Neu, 2001, Biorheology, 38, 53

Zeng, 2003, Colloids Surf., A, 226, 45, 10.1016/S0927-7757(03)00354-6

Tavana, 2009, Nat. Mater., 8, 736, 10.1038/nmat2515

Moraes, 2013, Biomaterials, 34, 9623, 10.1016/j.biomaterials.2013.08.046

Stenekes, 1999, Int. J. Pharm., 183, 29, 10.1016/S0378-5173(99)00038-1

Cheung Shum (), 2012, Biomicrofluidics, 6, 012808, 10.1063/1.3670365

Hardt, 2012, Lab Chip, 12, 434, 10.1039/C1LC20569B

Münchow, 2007, Lab Chip, 7, 98, 10.1039/B612669N

Ziemecka, 2011, Soft Matter, 7, 9878, 10.1039/c1sm06517c

Sauret, 2012, Appl. Phys. Lett., 100, 154106, 10.1063/1.3702434

Frenz, 2008, Angew. Chem., Int. Ed., 47, 6817, 10.1002/anie.200801360

Brouzes, 2009, Proc. Natl. Acad. Sci. U. S. A., 106, 14195, 10.1073/pnas.0903542106

Mazutis, 2013, Nat. Protoc., 8, 870, 10.1038/nprot.2013.046

Zilionis, 2017, Nat. Protoc., 12, 44, 10.1038/nprot.2016.154

Riahi, 2015, Curr. Opin. Chem. Eng., 7, 101, 10.1016/j.coche.2014.12.001

Atefi, 2016, J. Chem. Eng. Data, 61, 1531, 10.1021/acs.jced.5b00901

Ryden, 1971, J. Colloid Interface Sci., 37, 219, 10.1016/0021-9797(71)90283-9

Geschiere, 2012, Biomicrofluidics, 6, 022007, 10.1063/1.3700117

Ziemecka, 2011, Lab Chip, 11, 620, 10.1039/C0LC00375A

Lai, 2011, Lab Chip, 11, 3551, 10.1039/c1lc20560a

Dang, 2017, Lab Chip, 17, 286, 10.1039/C6LC00911E

Cubaud, 2008, Phys. Fluids, 20, 053302, 10.1063/1.2911716

Moon, 2016, Anal. Chem., 88, 3982, 10.1021/acs.analchem.6b00225

Mastiani, 2018, ACS Omega, 3, 9296, 10.1021/acsomega.8b01768

Xia, 1998, Angew. Chem., Int. Ed., 37, 550, 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G

Kim, 2014, Small, 10, 4020, 10.1002/smll.201400147

Odom, 2002, Langmuir, 18, 5314, 10.1021/la020169l

Han, 2016, Biomicrofluidics, 10, 064108, 10.1063/1.4967963

Matsuoka, 2012, Nano Lett., 12, 6480, 10.1021/nl304063f

Atefi, 2014, Langmuir, 30, 9691, 10.1021/la500930x

Guillot, 2008, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 78, 016307, 10.1103/PhysRevE.78.016307

Hashimoto, 2008, Soft Matter, 4, 1403, 10.1039/b715867j

Khakhar, 1987, Int. J. Multiphase Flow, 13, 71, 10.1016/0301-9322(87)90008-5

Dressler, 2014, J. Biomol. Screening, 19, 483, 10.1177/1087057113510401

Oh, 2008, Prog. Polym. Sci., 33, 448, 10.1016/j.progpolymsci.2008.01.002

Qi, 2012, Eur. Phys. J.: Spec. Top., 204, 85

Anna, 2016, Annu. Rev. Fluid Mech., 48, 285, 10.1146/annurev-fluid-122414-034425

Zhu, 2017, Lab Chip, 17, 34, 10.1039/C6LC01018K

Guillot, 2007, Phys. Rev. Lett., 99, 104502, 10.1103/PhysRevLett.99.104502

Moon, 2015, Lab Chip, 15, 2437, 10.1039/C5LC00217F