Passive daytime radiative cooling: Principle, application, and economic analysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Mandal J., Fu Y., Overvig A.C., Jia M., Sun K., Shi N.N., Zhou H., Xiao X., Yu N., and Yang Y.: Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018).
Landsberg H.E.: The Urban Climate (Academic Press, New York, 1981).
Raman A.P., Anoma M.A., Zhu L., Rephaeli E., and Fan S.: Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540 (2014).
Santamouris M. and Feng J.: Recent progress in daytime radiative cooling: Is it the air conditioner of the future? Buildings 8, 168 (2018).
Catalanotti S., Cuomo V., Piro G., Ruggi D., Silvestrini V., and Troise G.: The radiative cooling of selective surfaces. Solar Energy 17, 83–89 (1975).
Li W. and Fan S.: Radiative cooling: Harvesting the coldness of the universe. Opt. Photonics News 30, 32–39 (2019).
Chen Y., Wenxi Li J.M., Smith-Washington A., Tsai C.-C., Huang W., Shrestha S., Yu N., Han R.P.S., Cao A., and Yang Y.: Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci. Adv. 6 (eaaz5413, 2020).
Gentle A.R. and Smith G.B.: A subambient open roof surface under the mid-summer sun. Adv. Sci. 2, 1500119 (2015).
Zhai Y., Ma Y., David S.N., Zhao G., Lou R., Tan G., Yang R., and Yin X.: Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).
Li W., Shi Y., Chen Z., and Fan S.: Photonic thermal management of coloured objects. Nat. Commun. 9, 4240 (2018).
The Weather Company: Weather History Weather Underground (2018). Retrieved from: https://www.wunderground.com/history/ (accessed May 4, 2020).
Clean Air and Sustainable Environment Project: Air Quality Index (AQI) (2018). Retrieved from: http://case.doe.gov.bd/ (accessed May 4, 2020).
Wei P.-S., Chiu H.-H., Hsieh Y.-C., Yen D.-L., Lee C., Tsai Y.-C., and Ting T.-C.: Absorption coefficient of water vapor across atmospheric troposphere layer. Heliyon 5, e01145 (2019).
Lienhard J.H. IV and Lienhard J.H. V: A Heat Transfer Textbook, 5th ed. (Dover Publications, Inc., Mineola, NY, 2019).
Brady R.F. and Wake L.V.: Principles and formulations for organic coatings with tailored infrared properties. Prog. Org. Coat. 20, 1–25 (1992).
Mandal J., Jia M., Overvig A., Fu Y., Che E., Yu N., and Yang Y.: Porous polymers with switchable optical transmittance for optical and thermal regulation. Joule 3, 3088–3099 (2019).
Levinson R., Berdahl P., and Akbari H.: Solar spectral optical properties of pigments—Part II: Survey of common colorants. Solar Energy Mater. Solar Cells 89, 351–389 (2005).
Levinson R., Akbari H., and Reilly J.C.: Cooler tile-roofed buildings with near-infrared-reflective non-white coatings. Build. Environ. 42, 2591–2605 (2007).
Levinson R., Berdahl P., Akbari H., Miller W., Joedicke I., Reilly J., Suzuki Y., and Vondran M.: Methods of creating solar-reflective nonwhite surfaces and their application to residential roofing materials. Solar Energy Mater. Solar Cells 91, 304–314 (2007).
Modest M.F.: Radiative Properties of Real Surfaces. In Radiative Heat Transfer, 3rd ed., Modest M.F., ed. (Academic Press, New York, 2013); pp. 61–128.
Gilmore D.G.: Satellite thermal control handbook (The Aerospace Corporation Press, El Segundo, CA, 1994).
Karam R.D.: Satellite Thermal Control for Systems Engineers (American Institute of Aeronautics and Astronautics, Reston, VA, 1998).
Li T., Zhai Y., He S., Gan W., Wei Z., Heidarinejad M., Dalgo D., Mi R., Zhao Z., Song J., Dai J., Chen C., Aili A., Vellore A., Martini A., Yang R., Srebric J., Yin X., and Hu L.: A radiative cooling structural material. Science 364, 760–763 (2019).
Zhao D., Aili A., Zhai Y., Lu J., Kidd D., Tan G., Yin X., and Yang R.: Subambient cooling of water: Toward real-world applications of daytime radiative cooling. Joule 3, 111–123 (2019).
Zhou L., Song H., Liang J., Singer M., Zhou M., Stegenburgs E., Zhang N., Xu C., Ng T., Yu Z., Ooi B., and Gan Q.: A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2, 718–724 (2019).
Lipovšek B., Krč J., Isabella O., Zeman M., and Topič M.: Modeling and optimization of white paint back reflectors for thin-film silicon solar cells. J. Appl. Phys. 108, 103115 (2010).
Fu Y., Yang J., Su Y.S., Du W., and Ma Y.G.: Daytime passive radiative cooler using porous alumina. Solar Energy Mater. Solar Cells 191, 50–54 (2019).
Atiganyanun S., Plumley J.B., Han S.J., Hsu K., Cytrynbaum J., Peng T.L., Han S.M., & Han S.E.: Effective radiative cooling by paint-format microsphere-based photonic random media. ACS Photonics 5, 1181–1187 (2018).
Yang P., Chen C., and Zhang Z.M.: A dual-layer structure with record-high solar reflectance for daytime radiative cooling. Solar Energy 169, 316–324 (2018).
Song J.R., Qin J., Qu J., Song Z.N., Zhang W.D., Xue X., Shi Y.X., Zhang T., Ji W.Z., Zhang R.P., Zhang H.Q., Zhang Z.Y., and Wu X.: The effects of particle size distribution on the optical properties of titanium dioxide rutile pigments and their applications in cool non-white coatings. Sol. Energy Mater. Sol. Cells 130, 42–50 (2014).
Gonome H., Nakamura M., Okajima J., and Maruyama S.: Artificial chameleon skin that controls spectral radiation: Development of Chameleon cool coating (C3). Sci. Rep. 8, 1196 (2018).
Lee G.J., Kim Y.J., Kim H.M., Yoo Y.J., and Song Y.M.: Colored, daytime radiative coolers with thin-film resonators for aesthetic purposes. Adv. Opt. Mater. 6, 1800707 (2018).
Levinson R., Akbari H., Berdahl P., Wood K., Skilton W., and Petersheim J.: A novel technique for the production of cool colored concrete tile and asphalt shingle roofing products. Solar Energy Mater. Solar Cells 94, 946–954 (2010).
Lawrence Berkeley National Laboratory: Pigment Database. Available at: http://pigments.lbl.gov (accessed May 4, 2020).
Goldstein E.A., Raman A.P., and Fan S.: Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy 2, 17143 (2017).
Al-Obaidi K.M., Ismail M., and Rahman A.M.A.: Passive cooling techniques through reflective and radiative roofs in tropical houses in Southeast Asia: A literature review. Front. Archit. Res. 3, 283–297 (2014).
Barker G.: In Storage Tanks. The Engineer's Guide to Plant Layout and Piping Design for the Oil and Gas Industries, Barker G., ed. (Gulf Professional Publishing, Cambridge, MA, 2018); pp. 361–380.
Larsson E., Sennton G., and Larson J.: The vehicle platooning problem: Computational complexity and heuristics. Transp. Res. Part C 60, 258–277 (2015).
Grand View Research I.: Cool Roof Market Size, Share & Trends Analysis Report by Roof Type (Steep Slope, Low Slope), by Product (Single-ply Membranes, Asphalt Shingles, Metal Roofs, Coated Roofs), by Application, and Segment Forecasts, 2019–2025 (2019).
Baniassadi A., Sailor D.J., and Ban-Weiss G.A.: Potential energy and climate benefits of super-cool materials as a rooftop strategy. Urban Clim. 29, 100495 (2019).
Li X.-X. and Norford L.K.: Evaluation of cool roof and vegetations in mitigating urban heat island in a tropical city, Singapore. Urban Clim. 16, 59–74 (2016).
Vahmani P., Sun F., Hall A., and Ban-Weiss G.: Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California. Environ. Res. Lett. 11, 124027 (2016).
Sailor D.J.: Simulated urban climate response to modifications in surface Albedo and vegetative cover. J. Appl. Meteorol. 34, 1694–1704 (1995).
Levinson R. and Akbari H.: Potential benefits of cool roofs on commercial buildings: conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants. Energy Efficiency 3, 53–109 (2010).
Rosado P.J. and Levinson R.: Potential benefits of cool walls on residential and commercial buildings across California and the United States: Conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants. Energy Build. 199, 588–607 (2019).