Passive acoustic mapping of cavitation using eigenspace-based robust Capon beamformer in ultrasound therapy
Tài liệu tham khảo
Wan, 2015
Damianou, 2009, In vitro and in vivo brain ablation created by high-intensity focused ultrasound and monitored by MRI, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56, 1189, 10.1109/TUFFC.2009.1160
Kennedy, 2005, High-intensity focused ultrasound in the treatment of solid tumours, Nat. Rev. Cancer, 5, 321, 10.1038/nrc1591
Ikeda, 2006, Cloud cavitation control for lithotripsy using high intensity focused ultrasound, Ultrasound Med. Biol., 32, 1383, 10.1016/j.ultrasmedbio.2006.05.010
Xu, 2005, Controlled ultrasound tissue erosion: the role of dynamic interaction between insonation and microbubble activity, J. Acoust. Soc. Am., 117, 424, 10.1121/1.1828551
Xu, 2008, Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy—histotripsy, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55, 1122, 10.1109/TUFFC.2008.764
Xu, 2009, Size measurement of tissue debris particles generated from pulsed ultrasound cavitational therapy—histotripsy, Ultrasound Med. Biol., 35, 245, 10.1016/j.ultrasmedbio.2008.09.002
Frenkel, 2006, Pulsed high-intensity focused ultrasound enhances thrombolysis in an in vitro model, Radiology, 239, 86, 10.1148/radiol.2391042181
Zhang, 2015, Non-invasive thrombolysis using microtripsy: a parameter study, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 62, 2092, 10.1109/TUFFC.2015.007268
Mesiwala, 2002, High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo, Ultrasound Med. Biol., 28, 389, 10.1016/S0301-5629(01)00521-X
Hynynen, 2008, Ultrasound for drug and gene delivery to the brain, Adv. Drug Deliv. Rev., 60, 1209, 10.1016/j.addr.2008.03.010
Arvanitis, 2012, Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring, PloS One, 7, e45783, 10.1371/journal.pone.0045783
de Senneville, 2007, MR thermometry for monitoring tumor ablation, Eur. Radiol., 17, 2401, 10.1007/s00330-007-0646-6
Damianou, 2004, High intensity focused ultrasound ablation of kidney guided by MRI, Ultrasound Med. Biol., 30, 397, 10.1016/j.ultrasmedbio.2003.10.018
Vaezy, 2001, Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging, Ultrasound Med. Biol., 27, 33, 10.1016/S0301-5629(00)00279-9
Tanter, 2014, Ultrafast imaging in biomedical ultrasound, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 61, 102, 10.1109/TUFFC.2014.2882
Hu, 2015, Spatial-temporal ultrasound imaging of residual cavitation bubbles around a fluid-tissue interface in histotripsy, J. Acoust. Soc. Am., 137, 2563, 10.1121/1.4919286
Ding, 2016, Spatial–temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow, Ultrasonics, 54, 166, 10.1016/j.ultras.2016.04.010
Chen, 2003, The pulse length-dependence of inertial cavitation dose and hemolysis, Ultrasound Med. Biol., 29, 739, 10.1016/S0301-5629(03)00029-2
Farny, 2010, The correlation between bubble-enhanced HIFU heating and cavitation power, IEEE Trans. Biomed. Eng., 57, 175, 10.1109/TBME.2009.2028133
Li, 2014, Passive cavitation detection during pulsed HIFU exposures of ex vivo tissues and in vivo mouse pancreatic tumor, Ultrasound Med. Biol., 40, 1523, 10.1016/j.ultrasmedbio.2014.01.007
Xu, 2015, Dependence of pulsed focused ultrasound induced thrombolysis on duty cycle and cavitation bubble size distribution, Ultrason. Sonochem., 22, 160, 10.1016/j.ultsonch.2014.06.024
Roy, 1990, An acoustic backscattering technique for the detection of transient cavitation produced by microsecond pulses of ultrasound, J. Acoust. Soc. Am., 87, 2451, 10.1121/1.399091
Gyöngy, 2010, Passive spatial mapping of inertial cavitation during HIFU exposure, IEEE Trans. Biomed. Eng., 57, 48, 10.1109/TBME.2009.2026907
Norton, 2000, Time exposure acoustics, IEEE Trans. Geosci. Remote Sens., 38, 1337, 10.1109/36.843027
Jensen, 2012, Spatiotemporal monitoring of high-intensity focused ultrasound therapy with passive acoustic mapping, Radiology, 262, 252, 10.1148/radiol.11110670
Jensen, 2013, Real-time temperature estimation and monitoring of HIFU ablation through a combined modeling and passive acoustic mapping approach, Phys. Med. Biol., 58, 5833, 10.1088/0031-9155/58/17/5833
Crake, 2015, Passive acoustic mapping of magnetic microbubbles for cavitation enhancement and localization, Phys. Med. Biol., 60, 785, 10.1088/0031-9155/60/2/785
Choi, 2014, Non-invasive and real-time passive acoustic mapping of ultrasound-mediated drug delivery, Phys. Med. Biol., 59, 4861, 10.1088/0031-9155/59/17/4861
Arvanitis, 2013, Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain, Phys. Med. Biol., 58, 4749, 10.1088/0031-9155/58/14/4749
Aryal, 2014, Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system, Adv. Drug. Deliv. Rev., 72, 94, 10.1016/j.addr.2014.01.008
Gyöngy, 2010
Gyöngy, 2011, Passive cavitation mapping with temporal sparsity constraint, J. Acoust. Soc. Am., 130, 3489, 10.1121/1.3626138
Arvanitis, 2013, Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies, Med. Phys., 40, 112901, 10.1118/1.4823793
Haworth, 2012, Passive imaging with pulsed ultrasound insonations, J. Acoust. Soc. Am., 132, 544, 10.1121/1.4728230
Haworth, 2017, Quantitative frequency-domain passive cavitation imaging, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 64, 177, 10.1109/TUFFC.2016.2620492
Synnevåg, 2007, Adaptive beamforming applied to medical ultrasound imaging”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54, 1606, 10.1109/TUFFC.2007.431
Synnevåg, 2009, Benefits of minimum-variance beamforming in medical ultrasound imaging, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56, 1868, 10.1109/TUFFC.2009.1263
Holfort, 2009, Broadband minimum variance beamforming for ultrasound imaging, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56, 314, 10.1109/TUFFC.2009.1040
Asl, 2011, Contrast enhancement and robustness improvement of adaptive ultrasound imaging using forward-backward minimum variance beamforming, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 858, 10.1109/TUFFC.2011.1880
Coviello, 2015, Passive acoustic mapping utilizing optimal beamforming in ultrasound therapy monitoring, J. Acoust. Soc. Am., 137, 2573, 10.1121/1.4916694
Wang, 2005, Time-delay- and time-reversal-based robust capon beamformers for ultrasound imaging, IEEE Trans. Med. Imag., 24, 1308, 10.1109/TMI.2005.857222
Asl, 2010, Eigenspace-based minimum variance beamforming applied to medical ultrasound imaging, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57, 2381, 10.1109/TUFFC.2010.1706
Mehdizadeh, 2012, Eigenspace based minimum variance beamforming applied to ultrasound imaging of acoustically hard tissues, IEEE Trans. Med. Imag., 31, 1912, 10.1109/TMI.2012.2208469
Li, 2003, On robust capon beamforming and diagonal loading, IEEE Trans. Signal Proc., 51, 1702, 10.1109/TSP.2003.812831
Hill, 1994, Lesion development in focused ultrasound surgery: a general model, Ultrasound Med. Biol., 20, 259, 10.1016/0301-5629(94)90066-3
K. Vokurka, Cavitation noise modeling and analyzing, in CD-ROM Proceedings of Forum Acousticum 2002, Sevilla, Spain (Sociedad Espanola de Acústica, 2002).
Aliabadi, 2016, Eigenspace-based beamformer using oblique signal subspace projection for ultrasound plane-wave imaging, Biomed. Eng. Online, 15, 127, 10.1186/s12938-016-0244-4
Zeng, 2012, Eigenspace-based minimum variance beamformer combined with Wiener postfilter for medical ultrasound imaging, Ultrasonics, 52, 996, 10.1016/j.ultras.2012.07.012
Åsen, 2014, Implementing capon beamforming on a GPU for real-time cardiac ultrasound imaging, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 61, 76, 10.1109/TUFFC.2014.6689777