Passivated emitter and rear cell—Devices, technology, and modeling

Applied Physics Reviews - Tập 7 Số 4 - 2020
R. Preu1, Elmar Lohmüller1, Sabrina Lohmüller1, Pierre Saint‐Cast1, Johannes Greulich1
1Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstraße 2, 79110 Freiburg, Germany

Tóm tắt

Current studies reveal the expectation that photovoltaic (PV) energy conversion will become the front-runner technology to stem against the extent of global warming by the middle of this century. In 2019, the passivated emitter and rear cell (PERC) design has taken over the majority of global photovoltaic solar cell production. The objective of this paper is to review the fundamental physics of the underlying cell architecture, its development over the past few decades to an industry main stream product, as well as an in-depth characterization of current cells and the future potential of the device structure. The early development of PERCs was set by an intriguing series of improvements starting in 1989 and resulting in a long-standing energy conversion efficiency record of 25.0% set up in 1999. It took a decade of intense technological development to implement this structure as an upgrade to existing production lines and another decade to increase the efficiency of industrially manufactured cells to over 22%. Our analysis of state-of-the-art large-area screen-printed PERCs is based on the pilot-line technology in the Photovoltaic Technology Evaluation Center at the Fraunhofer ISE, which is assumed to be representative of current state-of-the art cell processing. The main recent cell efficiency improvements have been achieved thanks to fine line metallization taking advantage of the high quality emitter formation and passivation and to improvements in material quality. In order to enhance the energy yield of the PV modules, innovations in interconnection technology like multibusbar and shingling technology as well as bifaciality are supported by PERC developments. Over the years, ongoing improvements have been made in the understanding of PERCs by analytical and numerical modeling of these devices. We show a study based on 3D numerical modeling and an extrapolation of the PERC device structure and technology to achieve an efficiency of 26%. This result surpasses earlier investigations due to the combination of technology components, as further improved front contact and emitter design as well as rear passivation and mirrors. We expect that PERCs can also play a strong role at the bottom of multijunction solar cells and will defend a strong position in global PV production beyond the end of the now starting decade.

Từ khóa


Tài liệu tham khảo

2005, Physics of Solar Cells: From Principles to New Concepts

R. Perez and M. Perez, see https://www.google.com/search?client=firefox-b-e&q=Perez%2C+R.%3B+Perez%2C+M.%3A+A+fundamental+look+at+energy+reserves+for+the+planet.+In%3A+The+IEA+SHC+Solar+Update for “A Fundamental Look at Energy Reserves for the Planet.”

2009, IEA SHC Sol. Update, 50, 2

E. Bellini, see https://www.pv-magazine.com/2019/05/14/global-cumulative-pv-capacity-may-reach-1-3-tw-in-2023-solarpower-europe-says/ for “Global Cumulative PV Capacity May Reach 1.3 TW in 2023.”

2019, BP Statistical Review of World Energy

2019, Renewable Capacity Statistics 2019

2017, Prog. Photovoltaics, 25, 727, 10.1002/pip.2885

2018, Prog. Photovoltaics, 26, 505, 10.1002/pip.2950

1973, J. Appl. Phys., 44, 4785, 10.1063/1.1662040

ITRPV Consortium, 2019, 10th ed.

1989, Appl. Phys. Lett., 55, 1363, 10.1063/1.101596

2015, Sol. Energy Mater. Sol. Cells, 143, 190, 10.1016/j.solmat.2015.06.055

2019, IEEE J. Photovoltaics, 9, 629, 10.1109/JPHOTOV.2019.2899460

2016, IEEE J. Photovoltaics, 6, 1366, 10.1109/JPHOTOV.2016.2571627

2018, J. Phys. D, 51, 123001, 10.1088/1361-6463/aaac6d

1986, Appl. Phys. Lett., 48, 215, 10.1063/1.96799

2009, Prog. Photovoltaics, 17, 183, 10.1002/pip.892

2010, Challenges and advances in back-side metallization, Photovoltaics Int., 7, 64

2010, Pilot-line processing of highly-efficient MWT silicon solar cells, 1097

2016, Phys. Status Solidi A, 213, 68, 10.1002/pssa.201532737

2016, Prog. Photovoltaics, 24, 1487, 10.1002/pip.2712

2017, The SPEER solar cell—simulation study of shingled PERC technology based stripe cells

2018, Sol. RRL, 2, 1700171, 10.1002/solr.201700171

1997, The range of high-efficiency silicon solar cells fabricated at Fraunhofer ISE, 231

2006, High-efficiency solar cells with laser-grooved buried contact front and laser-fired rear for industrial production, 826

2002, Prog. Photovoltaics, 10, 29, 10.1002/pip.422

2005, Screen printed large area crystalline silicon solar cells on thin substrates, 647

2005, Local contact structures for industrial perc-type solar cells, 942

2017, Key aspects for fabrication of p-type Cz-Si PERC solar cells exceeding 22% conversion efficiency

1905, Ann. Phys., 322, 132, 10.1002/andp.19053220607

1961, J. Appl. Phys., 32, 510, 10.1063/1.1736034

1984, IEEE Trans. Electron Devices, 31, 711, 10.1109/T-ED.1984.21594

2013, IEEE J. Photovoltaics, 3, 1184, 10.1109/JPHOTOV.2013.2270351

International Electrotechnical Commission, 2019, IEC 60904-3: Photovoltaic Devices—Part 3: Measurement Principles for Terrestrial Photovoltaic (PV) Solar Devices with Reference Spectral Irradiance Data, 2nd ed

1995, PV-module reflection losses. Measurement, simulation and influence on energy yield and performance ratio, 1465

1995, Advantages of a new metallisation structure for the front side of solar cells, 1368

A. Mette, “New concepts for front side metallization of industrial silicon solar cells,” Ph.D. dissertation (Freiburg, Universität, 2007).

2008, Prog. Photovoltaics, 16, 555, 10.1002/pip.850

2012, Metallization of crystalline silicon solar cells: A review, 102

1990, Appl. Phys. Lett., 57, 602, 10.1063/1.103610

1985, Silicon point contact concentrator solar cells, 61

2002, Nature of the Ag-Si interface in screen-printed contacts: A detailed transmission electron microscopy study of cross-sectional structures, 360

2002, Formation and nature of AG thick film front contacts on crystalline silicon solar cells, 343

1997, Prog. Photovoltaics, 5, 269, 10.1002/(SICI)1099-159X(199707/08)5:4%3C269::AID-PIP174%3E3.0.CO;2-1

2001, Sol. Energy Mater. Sol. Cells, 65, 9, 10.1016/S0927-0248(00)00072-6

2002, High-efficiency silicon solar cells for low-illumination applications, 450

2011, Energy Procedia, 8, 313, 10.1016/j.egypro.2011.06.142

2019, High Efficiency Cell Technologies - 2019 Edition, 43

2019, Photovoltaics Int., 43, 29

R. S. Ohl, “Light-sensitive electric device,” U.S. patent 2402662A (27 May 1941).

1954, J. Appl. Phys., 25, 676, 10.1063/1.1721711

1977, 91

Palz, 2014, Solar Power for the World: What You Wanted to Know About Photovoltaics, 227

1972, 83

1962, J. Electrochem. Soc., 109, 313, 10.1149/1.2425407

1965, 174

1963, The effects of a drift field on solar cells, B12

Gatos, 1960, The Surface Chemistry of Metals and Semiconductors, 151

1969, J. Appl. Phys., 40, 4569, 10.1063/1.1657233

1973, Semicond. Silicon, 233, 339

1993, Semicond. Sci. Technol., 8, 1, 10.1088/0268-1242/8/1/001

1974

1975, Optical properties of the COMSAT non-reflective cell, 40

1979, IEEE Trans. Electron Devices, 26, 1294, 10.1109/T-ED.1979.19596

1979, Appl. Phys. Lett., 34, 790, 10.1063/1.90646

1978, IEEE Trans. Electron Devices, 25, 66, 10.1109/T-ED.1978.19036

1983, IEEE Trans. Electron Devices, 30, 1360, 10.1109/T-ED.1983.21299

1981, Appl. Phys. Lett., 39, 483, 10.1063/1.92767

1983, Sol. Cells, 8, 3, 10.1016/0379-6787(83)90036-4

1984, Appl. Phys. Lett., 44, 1163, 10.1063/1.94678

1971, J. Electrochem. Soc., 118, 141, 10.1149/1.2407929

1978, J. Electrochem. Soc., 125, 1696, 10.1149/1.2131275

1986, IEEE Electron Device Lett., 7, 567, 10.1109/EDL.1986.26476

1987, An interdigitated back contact solar cell with high efficiency under concentrated sunlight, 885

1990, IEEE Trans. Electron Devices, 37, 331, 10.1109/16.46361

1991, Recent advances in silicon solar cell performance, 250

A. Wang, “High efficiency PERC and PERL silicon solar cells,” Ph.D. thesis (University of New South Wales, 1992).

1999, IEEE Trans. Electron Devices, 46, 1495, 10.1109/16.772498

1999, Prog. Photovoltaics, 7, 471, 10.1002/(SICI)1099-159X(199911/12)7:6%3C471::AID-PIP298%3E3.0.CO;2-7

1996, Sol. Energy Mater. Sol. Cells, 41-42, 87, 10.1016/0927-0248(95)00117-4

1994, IEEE Trans. Electron Devices, 41, 1556, 10.1109/16.310107

1990, IEEE Trans. Electron Devices, 37, 365, 10.1109/16.46368

1988, The Si-SiO2 System

1994, IEEE Trans. Electron Devices, 41, 1592, 10.1109/16.310110

1998, Prog. Photovoltaics, 6, 169, 10.1002/(SICI)1099-159X(199805/06)6:3%3C169::AID-PIP217%3E3.0.CO;2-5

2009, Prog. Photovoltaics, 17, 85, 10.1002/pip.880

S. R. Wenham and M. A. Green, “Laser grooved solar cell,” U.S. patent 4,626,613 (2 December 1986).

S. R. Wenham and M. A. Green, “Buried contact solar cell,” U.S. patent 4,726,850 (23 February 1988).

2000, Prog. Photovoltaics, 8, 127, 10.1002/(SICI)1099-159X(200001/02)8:1%3C127::AID-PIP311%3E3.0.CO;2-D

1992, Pilot line production of laser grooved silicon solar cells, 416

1994, 23.5% efficiency and other recent improvements in silicon solar cell and module performance, 776

1994, Mechanically grooved, multi-junction, interdigitated rear contact silicon solar cells for low lifetime substrates, 63

1991, A high efficiency silicon solar cell production technology, 280

899

2006, 20.1% efficient large area cell on 140 micron thin silicon wafer, 521

1988, Solarzelle und Verfahren zu ihrer Herstellung

1988, Dependence of surface recombination velocities at silicon solar cells surfaces on incident light intensity, 1165

1989, Cost-effective processes for silicon solar cells with high performance, 777

1993, High-efficiency solar cells from FZ, CZ and MC silicon material, 271

S. Sterk, “Simulation und Technologie von hocheffizienten Einsonnen- und Konzentratorsolarzellen aus monokristallinem Silicium,” Ph.D. dissertation (Freiburg Universität, 1995).

1994, Prog. Photovoltaics, 2, 19, 10.1002/pip.4670020104

1997, Optimized high-efficiency silicon solar cells with Jsc = 42 mA/cm2 and h = 23.3%, 392

1996, Sol. Energy Mater. Sol. Cells, 41-42, 101, 10.1016/0927-0248(95)00136-0

1997, A study of the manufacture at 500 MWp p.a. of crystalline silicon photovoltaic modules, 11

2000, Laser ablation: A new low-cost approach for passivated rear contact formation in crystalline silicon solar cell technology, 1181

2000, Appl. Surf. Sci., 154-155, 633, 10.1016/S0169-4332(99)00468-7

2000, New simplified methods for patterning the rear contact of RP-PERC high-efficiency solar cells, 168

R. Preu, “Innovative Produktionstechnologien für kristalline Silicium-Solarzellen,” Ph.D. dissertation (FernUniversität, Hagen, 2000).

2000, High-quality passivated rear contact structure for silicon solar cells based on simple mechanical abrasion, 172

2001, Laser-fired contacts (LFC), 1303

2002, Investigations on laser-fired contacts for passivated rear solar cells, 300

2003, Characterization of laser-fired contacts processed on wafers with different resistivities, 1032

2003, Analysis of laser-fired local back surface fields using n+np+ cell structures, 1332

2006, Prog. Photovoltaics, 14, 195, 10.1002/pip.660

2003, 1021

2004, Comprehensive experimental study on the performance of very thin laser-fired high-efficiency solar cells, 408

2004, Prog. Photovoltaics, 12, 553, 10.1002/pip.583

2002, Laser-fired contacts—Transfer of a simple high efficiency process scheme to industrial production, 130

2003, Technology path to the industrial production of highly efficient and thin c-Si solar cells, 1451

2003

2004, Silicon solar cells with screen printed front contact and dielectrically passivated laser-fired rear electrode, 447

2005, Status and advancements in transferring the laser-fired contact technology to screen-printed silicon solar cells, 785

1991, Impact of metallization techniques on 20% efficient silicon solar cells, 278

2009, Industrial PVD metallization for high efficiency crystalline silicon solar cells, 1

2010, Industrial inline PVD metallization for silicon solar cells with laser fired contacts leading to 21.8% efficiency, 52

Photovolatics Int., 2019, 51

2009, Prog. Photovoltaics, 17, 554, 10.1002/pip.919

2013, Investigation of methods for adhesion characterization of evaporated aluminum layers, 1436

2012, Energy Procedia, 27, 561, 10.1016/j.egypro.2012.07.110

2004, Surface passivation with SiNx:H for rear side locally contacted Si solar cell, 1033

2011, Energy Procedia, 8, 324, 10.1016/j.egypro.2011.06.144

2007, Firing stable surface passivation using all-PECVD stacks of SiOx: H and SiNx:H, 1030

2009, Phys. Status Solidi RRL, 3, 287, 10.1002/pssr.200903272

2011, IEEE J. Photovoltaics, 1, 22, 10.1109/JPHOTOV.2011.2161864

2018, Sol. Energy Mater. Sol. Cells, 176, 295, 10.1016/j.solmat.2017.10.010

2013, Sol. Energy Mater. Sol. Cells, 108, 164, 10.1016/j.solmat.2012.09.029

2007, Aluminum foil as back side metallization for LFC cells, 1499

2010, Silicon solar cells using aluminum foil as rear side metallization reaching 21.0% efficiency, 2211

2012, Laser-based foil-metallization for industrial PERC solar cells, 797

2014, Progress in laser-based foil metallization for industrial PERC solar cells, 532

J.-F. Nekarda, “Laser fired contacts (LFC) - Charakterisierung, Optimierung und Modellierung eines Verfahrens zur lokalen Rückseitenkontaktierung dielektrisch passivierter Siliziumsolarzellen,” Ph.D. dissertation (Universität Konstanz, 2012).

2019, FoilMet®-Connect: A new rear metallization upgrade for PERC and other cell concepts, AIP Conf. Proc., 2156, 020004, 10.1063/1.5125869

1997, Remote PECVD silicon nitride - a key technology for the crystalline silicon PV industry of the 21st century?, 1

1998, Crystalline Silicon Solar Cells: Advanced Surface Passivation and Analysis

2001, Loss mechanisms in silicon nitride rear surface passivation for silicon solar cells, 339

2002, Prog. Photovoltaics, 10, 271, 10.1002/pip.420

2000, A novel mask-free low-temperature rear surface passivation scheme based on PECVD silicon nitride for high-efficiency silicon solar cells, 1747

2003, Low-temperature rear surface passivation schemes for >20% efficient silicon solar cells, 1395

2002, J. Appl. Phys., 92, 2602, 10.1063/1.1495529

2008, Detailed study on the passivation mechanism of a-SixC1-x for the solar cell rear side, 1023

2009, High-efficiency silicon solar cells with intrinsic and doped A-SiCx rear side passivation, 2197

2004, Silicon nitride-silicon oxide stacks for solar cell rear side passivation, 1037

2006, Characterisation of silver thick-film contact formation on textured monocrystalline silicon solar cells, 613

2007, Investigations on the influence of different annealing steps on silicon solar cells with silver thick film contacts, 1556

2008, Detailed analysis of annealing silver front side contacts on silicon solar cells, 1

2009, Sol. Energy Mater. Sol. Cells, 93, 1630, 10.1016/j.solmat.2009.04.019

2009, Thermal oxidation as a key technology for high efficiency screen printed industrial silicon solar cells, 1594

2009, All-screen-printed 120-μm-thin large-area silicon solar cells applying dielectric rear passivation and laser-fired contacts reaching 18% efficiency, 1151

2010, Towards 19% efficient industrial PERC devices using simultaneous front emitter and rear surface passivation by thermal oxidation, 34

2011, IEEE Electron Device Lett., 32, 1719, 10.1109/LED.2011.2167709

1985, A novel thin silicon solar cell with Al2O3 as surface passivation, 1752

2004, Surface passivation of silicon by means of negative charge dielectrics, 132

2004, Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge, 759

2006, Appl. Phys. Lett., 89, 042112, 10.1063/1.2240736

2009, Appl. Phys. Lett., 95, 151502, 10.1063/1.3250157

2010, High productive solar cell passivation on Roth&Rau MAiA® MW-PECVD inline machine: A comparison of Al2O3, SiO2 and SiNx-H process conditions and performance, 1352

2011, Fully screen-printed PERC cells with laser-fired contacts—An industrial cell concept with 19.5% efficiency, 3663

2011, Q.ANTUM-Q-cells next generation high-power silicon solar cell and module concept, 821

2011, 20%-efficient rear side passivated solar cells in pilot series designed for conventional module assembling, 2150

2011, R&D pilot-line production of multi-crystalline Si solar cells with top efficiencies exceeding 19%, 1919

2012, Current status of Q.CELLS' high-efficiency Q.ANTUM technology with new world record module results, 661

2014, Sol. Energy Mater. Sol. Cells, 120, 417, 10.1016/j.solmat.2013.06.025

2010, Advanced rear side technology for industrial high efficiency solar cells, 2314

2011, Towards 19,5% industrial crystalline silicon solar cells, 843

2012, Energy Procedia, 27, 631, 10.1016/j.egypro.2012.07.121

2020, PV Manufacturing & Technology, Quarterly Report Release

2019, Exceeding 23% and mass production of p-Cz Q.ANTUM bifacial solar cells, 96

2018, 110003-1

2017, Energy Procedia, 124, 338, 10.1016/j.egypro.2017.09.308

2016, 3360

2020, Sol. Energy Mater. Sol. Cells, 204, 110202, 10.1016/j.solmat.2019.110202

2017, Prog. Photovoltaics, 25, 509, 10.1002/pip.2806

2017, Energy Procedia, 124, 936, 10.1016/j.egypro.2017.09.274

2020, Front side optimization on boron- and gallium-doped Cz-Si PERC solar cells exceeding 22% conversion efficiency

2016, Sol. Energy Mater. Sol. Cells, 158, 37, 10.1016/j.solmat.2016.05.064

2001, J. Appl. Phys., 89, 3821, 10.1063/1.1350633

2001, Sol. Energy Mater. Sol. Cells, 65, 239, 10.1016/S0927-0248(00)00099-4

2001, Improved understanding of the surface-passivating properties of RPECVD silicon nitride on p-type crystalline silicon, 343

2017, Phys. Status Solidi A, 214, 1700293, 10.1002/pssa.201700293

1985, Solid-State Electron., 28, 47, 10.1016/0038-1101(85)90209-6

1993, IEEE Trans. Electron Devices, 40, 1181, 10.1109/16.214751

1996, PC1D version 4 for Windows: From analysis to design, 377

2010, A freeware 1D emitter model for silicon solar cells, 1

2016, J. Appl. Phys., 119, 025706, 10.1063/1.4939960

2002, J. Appl. Phys., 92, 3187, 10.1063/1.1501743

2011, IEEE J. Photovoltaics, 1, 135, 10.1109/JPHOTOV.2011.2173299

1991, IEEE Trans. Electron Devices, 38, 1925, 10.1109/16.119035

2012, Energy Procedia, 15, 78, 10.1016/j.egypro.2012.02.009

J. Benick, “High efficiency n-type solar cells with a front side boron emitter,” Ph.D. dissertation (Universität Freiburg, 2010).

2014, Energy Procedia, 55, 101, 10.1016/j.egypro.2014.08.087

2009, Sol. Energy Mater. Sol. Cells, 93, 1103, 10.1016/j.solmat.2009.01.003

2009, J. Microelectron. Electron. Packag., 6, 13, 10.4071/1551-4897-6.1.13

2010, Mater. Des., 31, 1056, 10.1016/j.matdes.2009.09.051

2011, Energy Procedia, 8, 449, 10.1016/j.egypro.2011.06.164

2014, IEEE J. Photovoltaics, 4, 498, 10.1109/JPHOTOV.2013.2278657

2014, Mater. Sci. Semicond. Process., 27, 790, 10.1016/j.mssp.2014.08.023

2017, Energy Procedia, 124, 680, 10.1016/j.egypro.2017.09.343

2017, IEEE J. Photovoltaics, 7, 129, 10.1109/JPHOTOV.2016.2626147

2019, Sol. Energy Mater. Sol. Cells, 200, 109969, 10.1016/j.solmat.2019.109969

2019, Project finale”-Screen and screen printing process development for ultra-fine-line contacts below 20 μm finger width, 255

2020, Screen pattern simulation for an improved front-side Ag-electrode metallization of Si-solar cells, Prog. Photovoltaics, 28, 1054, 10.1002/pip.3313

2019, Summary of the 8th workshop on metallization and interconnection for crystalline silicon solar cells, AIP Conf. Proc., 2156, 020001, 10.1063/1.5125866

2018, Screen printed thick film metallization of silicon solar cells: Recent developments and future perspectives, 819

2008, Potential of Both-Sides Contacted Solar Cells

2008, Aerosol-Printed Silicon Solar Cell Exceeding 20% Efficiency

2008, Advanced Screen Printing Technique for High Definition Front Side Metallization of Crystalline Silicon Solar Cells

2008, Industrial type CZ silicon solar cells with screen-printed fine line front contacts and passivated rear contacted by laser firing, 1704

2009, Industrially feasible mc-Si solar cells with fine line printed front contacts on high emitter sheet resistance towards 17% efficiency, 2172

2010, High accuracy, high aspect ratio metallization on silicon solar cells using a print on print process, 1651

2010, Thick Film Printing: Towards Fine Line High Aspect Ratio

2010, Double printing of front contact Ag in c-Si solar cells, 2338

2011, Understanding the impact of double screen-printing on silicon solar cells by 2-D numerical simulations, 2177

2011, 18.9%-efficient screen-printed solar cells applying a print-on-print process, 1607

2011, Ultra fine line print process development for silicon solar cell metalisation

2012, Energy Procedia, 21, 24, 10.1016/j.egypro.2012.05.004

2012, Prog. Photovoltaics, 20, 630, 10.1002/pip.1198

2013, Screen printed metal contacts to Si solar cells: Formation and synergistic improvements, 3435

2013, Energy Procedia, 43, 80, 10.1016/j.egypro.2013.11.091

2013, Energy Procedia, 43, 66, 10.1016/j.egypro.2013.11.089

2013, Energy Procedia, 38, 725, 10.1016/j.egypro.2013.07.339

2013, Improvement of the solar cell efficiency by fine line print on print technology, 2176

2014, Double printing feasibility of 35 um printed Ag finger width, 1387

2014, Phys. Status Solidi RRL, 8, 675, 10.1002/pssr.201409190

2015, Energy Procedia, 67, 116, 10.1016/j.egypro.2015.03.295

2015, Cell efficiency improvement of fully implanted nPERT solar cells realized through metallization optimization, 779

2015, IEEE J. Photovoltaics, 5, 525, 10.1109/JPHOTOV.2014.2388073

2016, Fine line double printing + for today and tomorrow cell metallization and interconnection, 958

2017, Status and Perspectives of Metallization Technologies for HVM

2015, Incremental efficiency improvements of mass-produced PERC cells up to 24%, predicted solely with continuous development of existing technologies and wafer materials, 473

2017, Phys. Status Solidi A, 214, 1600708, 10.1002/pssa.201600708

2016, Prog. Photovoltaics, 24, 1475, 10.1002/pip.2696

2017, Energy Procedia, 124, 131, 10.1016/j.egypro.2017.09.322

2017, 22.61% efficient fully screen printed PERC solar cell, 2220

G. Schubert, “Thick film metallisation of crystalline silicon solar cells,” Ph.D. dissertation (Universität Konstanz, 2006).

2005, Low resistance screen-printed Ag contacts to POCl3 emitters with low saturation current density for high efficiency Si solar cells, 3359

2013, Front-side Ag contacts enabling superior recombination and fine-line performance, 2171

2014, IEEE J. Photovoltaics, 4, 168, 10.1109/JPHOTOV.2013.2291313

2014, Process optimization for the front side of p-type silicon solar cells, 1342

2010, Status of selective emitter technology, 1091

1995, Realization of selective emitters by rapid thermal and laser assisted techniques, 1578

2013, IEEE J. Photovoltaics, 3, 621, 10.1109/JPHOTOV.2012.2230685

U. Jäger, “Selektive Laserdiffusion für Hocheffiziente Solarzellen aus Kristallinem Silicium,” Ph.D. dissertation (Albert-Ludwigs-Universität, 2014).

2017, Suitability of POCL3 diffusion processes with in-situ oxidation for forming laser-doped selective emitters with low carrier recombination

1992, Solid-State Electron., 35, 953, 10.1016/0038-1101(92)90325-7

1992, Solid-State Electron., 35, 961, 10.1016/0038-1101(92)90326-8

2013, IEEE J. Photovoltaics, 3, 114, 10.1109/JPHOTOV.2012.2210030

2012, Phys. Rev. B, 86, 165202, 10.1103/PhysRevB.86.165202

2006, Appl. Phys. Lett., 88, 261901, 10.1063/1.2218041

1952, Phys. Rev., 87, 835, 10.1103/PhysRev.87.835

1952, Phys. Rev., 87, 387, 10.1103/PhysRev.87.387

2003, J. Appl. Phys., 94, 6552, 10.1063/1.1618912

2004, Appl. Phys. Lett., 85, 4061, 10.1063/1.1812833

2005, J. Appl. Phys., 97, 33523, 10.1063/1.1845584

2005, Lifetime Spectroscopy: A Method of Defect Characterization in Silicon for Photovoltaic Applications

1973, Investigation of photon and thermal induced changes in silicon solar cells, 404

1995, 21% efficient solar cells processed from Czochralski grown silicon, 9

2003, Solid State Phenom., 95-96, 187, 10.4028/www.scientific.net/SSP.95-96.187

2018, AIP Adv., 8, 085219, 10.1063/1.5047084

2013, IEEE J. Photovoltaics, 3, 125, 10.1109/JPHOTOV.2012.2211338

1997, Investigation of carrier lifetime instabilities in Cz-grown silicon, 13

2004, Phys. Rev. B, 69, 241071, 10.1103/PhysRevB.69.024107

2003, Appl. Phys. Lett., 82, 1054, 10.1063/1.1544431

2005, Prog. Photovoltaics, 13, 287, 10.1002/pip.586

2014, Sol. Energy Mater. Sol. Cells, 131, 2, 10.1016/j.solmat.2014.06.027

2016, J. Appl. Phys., 119, 65701, 10.1063/1.4941387

2016, Ultrafast lifetime regeneration in an industrial belt-line furnace applying intense illumination at elevated temperature, 10.4229/EUPVSEC20162016-2DO.1.1

2017, Ultrafast in-line capable regeneration process for preventing light induced degradation of boron-doped p-type Cz-silicon PERC solar cells

2016, Realistic efficiency potential of next-generation industrial Czochralski-grown silicon solar cells after deactivation of the boron-oxygen-related defect center, Prog. Photovoltaics, 24, 920, 10.1002/pip.2731

2002, Semiconductor Devices, Physics and Technology, 2nd ed.

1981, 90

2008, Solid State Phenom., 131-133, 1, 10.4028/www.scientific.net/SSP.131-133.1

2015, Appl. Phys. Express, 8, 105501, 10.7567/APEX.8.105501

2012, Light induced degradation of rear passivated mc-Si solar cells

2018, Q.ANTUM on p-type Cz silicon: High-end performance and reliability, 993

2017, Prog. Photovoltaics, 99, 13701, 10.1002/pip.2954

2017, Sol. Energy Mater. Sol. Cells, 173, 80, 10.1016/j.solmat.2017.05.066

2018, Influence of temperature on light induced phenomena in multicrystalline silicon, AIP Conf. Proc., 1999, 130007, 10.1063/1.5049326

2018, Sol. Energy Mater. Sol. Cells, 184, 48, 10.1016/j.solmat.2018.04.024

P. Engelhart and F. Kersten, “Solarzellenherstellungsverfahren und Solarzellenbehandlungsverfahren,” DE102013113123A1 (27 November 2013).

2016, Phys. Status Solidi RRL, 10, 861, 10.1002/pssr.201600272

2019, Sol. Energy Mater. Sol. Cells, 200, 109938, 10.1016/j.solmat.2019.109938

1968, Surf. Sci., 9, 347, 10.1016/0039-6028(68)90182-9

1991, SiO2-passivated high efficiency silicon solar cells: Process dependence of Si-SiO2 interface recombination, 631

1993, Sol. Energy Mater. Sol. Cells, 29, 175, 10.1016/0927-0248(93)90075-E

2015, Skin care for healthy silicon solar cells, 1

2018, Appl. Phys. Lett., 112, 242105, 10.1063/1.5029346

2010, High productive solar cell passivation on Roth&Rau MAiA® MW-PECVD inline machine–A comparison of Al2O3, SiO2 and SiNx-H process conditions and performance

2009, Phys. Status Solidi RRL, 3, 160, 10.1002/pssr.200903140

2010, Appl. Phys. Lett., 97, 162103, 10.1063/1.3505311

2012, Appl. Phys. Lett., 100, 202107, 10.1063/1.4718596

2006, Sol. Energy Mater. Sol. Cells, 90, 3438, 10.1016/j.solmat.2006.04.014

2008, Prog. Photovoltaics, 16, 461, 10.1002/pip.823

2010, High-efficiency p-type PERC solar cells applying PECVD ALOx layers, 1488

1965, J. Electrochem. Soc., 112, 430, 10.1149/1.2423562

2020, IEEE J. Photovoltaics, 10, 407, 10.1109/JPHOTOV.2019.2962337

2011, Phys. Status Solidi RRL, 5, 147, 10.1002/pssr.201105045

2009, Firing stability of atomic layer deposited Al2O3 for c-Si surface passivation, 705

P. Saint-Cast, “Passivation of Si surfaces by PECVD aluminium oxide,” Ph.D. dissertation (Universität Konstanz, 2012).

2001, Semicond. Sci. Technol., 16, 164, 10.1088/0268-1242/16/3/308

2014, Sol. Energy Mater. Sol. Cells, 120, 426, 10.1016/j.solmat.2013.06.024

2007, Prog. Photovoltaics, 15, 521, 10.1002/pip.758

2013, Energy Procedia, 43, 93, 10.1016/j.egypro.2013.11.093

2010, Evaluation of Cost-Effective Technologies for Highly Efficient Silicon-Based Solar Cells, 10.5075/epfl-thesis-4851

2015, Prog. Photovoltaics, 23, 10, 10.1002/pip.2388

2015, Energy Procedia, 84, 47, 10.1016/j.egypro.2015.12.294

2016, Energy Procedia, 92, 82, 10.1016/j.egypro.2016.07.033

2016, IEEE J. Photovoltaics, 6, 68, 10.1109/JPHOTOV.2015.2491610

2011, IEEE Trans. Electron Devices, 58, 3239, 10.1109/TED.2011.2161089

2013, IEEE J. Photovoltaics, 3, 206, 10.1109/JPHOTOV.2012.2217113

2016, IEEE J. Photovoltaics, 6, 830, 10.1109/JPHOTOV.2016.2551465

2015, Energy Procedia, 67, 64, 10.1016/j.egypro.2015.03.288

2019, New approach for a combined process of an ultrafast boron-oxygen defect regeneration and thermal contact treatment of Ni/Cu/Ag plated solar cells, 457

Solar RRL

2010, A freeware 1D emitter model for silicon solar cells, 2188

2020

1977, 967

1989, J. Electrochem. Soc., 136, 518, 10.1149/1.2096673

2005, The early history of bifacial solar cells, 801

2018, Jpn. J. Appl. Phys., Part 1, 57, 08RA01, 10.7567/JJAP.57.08RA01

2018, Industrial BIPERC solar cells with varied rear side characteristics under bifacial illumination, 596

2018, Towards 90% bifaciality for p-type Cz-Si solar cells by adaption of industrial PERC processes, 3727

2017, Energy Procedia, 124, 875, 10.1016/j.egypro.2017.09.247

2019, AIP Conf. Proc., 2147, 040019

PV Magazine, see https://www.pv-magazine.com/2017/12/08/longi-claims-82-15-bifaciality-record-for-its-perc-solar-cell/ “Longi Claims 82.15% Bifaciality Record for its PERC Solar Cell.”

2016, Bifacial solar cells fabricated by PERC process for mass production, 772

2017, Bifacial PERC+ solar cells and modules: An overview, 649

E. Hartmannsgruber, see https://solarpowermanagement.net/article/100350/PERC_Efficiency_Gets_a_Boost_from_LDSE for “PERC Efficiency Gets A Boost from LDSE.”

2018, Influences of aluminum rear contact and back surface field formation for PERC solar cells, 1037

2019, High-precision alignment procedures for patterning processes in solar cell production, Prog. Photovoltaics, 28, 189, 10.1002/pip.3218

2017, Industry related approaches for bifacial p-type PERX solar cells, 08RB18

2017, p-PERT bifacial solar cell technology past and future

2017, IEEE J. Photovoltaics, 7, 1244, 10.1109/JPHOTOV.2017.2719278

2017, Energy Procedia, 124, 891, 10.1016/j.egypro.2017.09.278

2017, Bifacial p-type silicon PERL solar cells with screen-printed pure silver metallization and 89% bifaciality

2019, Inline deposited PassDop layers for rear side passivation and contacting of p-type c-Si PERL solar cells with high bifaciality, AIP Conf. Proc., 2147, 110005, 10.1063/1.5123881

2016, IEEE J. Photovoltaics, 6, 145, 10.1109/JPHOTOV.2015.2498039

E. Bellini, see https://www.pv-magazine.com/2020/01/17/jinko-claims-two-more-efficiency-records-for-bifacial-panels/ for “Jinko Claims Two More Efficiency Records for Bifacial Panels.”

J. D. C. Dickson, “Photo-voltaic semiconductor apparatus or the like,” U.S. patent 2,938,938 (31 May 1960).

R. J. Nielsen and R. Leif, “Satellite solar cell assembly,” U.S. patent 3,116,171 (31 December 1963).

2002, Pilot production of high efficiency PERL silicon solar cells for the world solar challenge solar car race, 65

R. Morad, G. Almogy, I. Suez, J. Hummel, N. Beckett, Y. Lin, D. Maydan, and J. Gannon, “Shingled solar cell module,” U.S. patent 9,397,252 B2 (19 July 2016).

R. Morad, G. Almogy, I. Suez, J. Hummel, N. Beckett, Y. Lin, D. Maydan, and J. Gannon, “Shingled solar cell module,” U.S. patent 9,401,451 B2 (26 July 2016).

R. Morad, G. Almogy, I. Suez, J. Hummel, N. Beckett, Y. Lin, D. Maydan, and J. Gannon, “Shingled solar cell module,” US patent 9.484,484 B2 (1 November 2016).

2017, Shingling technology for cell interconnection: Technological aspects and process integration, 38

2017, Cell design optimization for shingled modules, 880

2017, Cell-to-module conversion loss simulation for shingled-cell concept, 178

E. Sung and J. Zu-Li Liu, “Systems, method and apparatus for curing,” U.S. patent 9,748, 434 B1 (29 August 2017).

2017, Photovoltaics Int., 36, 48

2018, Comparison of layouts for shingled bifacial PV modules in terms of power output, cell-to-module ratio and bifaciality, 1333

2019, AIP Conf. Proc., 2147, 080001, 10.1063/1.5123867

2019, Sol. Energy Mater. Sol. Cells, 200, 109991, 10.1016/j.solmat.2019.109991

2019, Photovoltaics Int., 43, 129

2020, IEEE J. Photovoltaics, 10, 390, 10.1109/JPHOTOV.2019.2959946

2003, Analysis of edge recombination for high-efficiency solar cells at low illumination densities, 1009

1995, J. Appl. Phys., 77, 3491, 10.1063/1.358643

J. Dicker, “Analyse und Simulation von hocheffizienten Silizium-Solarzellenstrukturen für industrielle Fertigungstechniken,” Ph.D. dissertation (Universität Konstanz, 2003).

2000, Effects of pn-junctions bordering on surfaces investigated by means of 2D-modeling, 116

2000, The influence of edge recombination on a solar cell's I-V curve, 1651

1996, Prog. Photovoltaics, 4, 355, 10.1002/(SICI)1099-159X(199609/10)4:5%3C355::AID-PIP145%3E3.0.CO;2-X

2000, Prog. Photovoltaics, 8, 201, 10.1002/(SICI)1099-159X(200003/04)8:2%3C201::AID-PIP288%3E3.0.CO;2-V

2015, IEEE J. Photovoltaics, 5, 1067, 10.1109/JPHOTOV.2015.2434597

2000, 158

2008, 301

2013, 1807

2014, Study of fast laser induced cutting of silicon materials, Proc. SPIE, 8967, 89671J, 10.1117/12.2039819

2015, Mater. Sci. Forum, 821-823, 528, 10.4028/www.scientific.net/MSF.821-823.528

2015, Energy Procedia, 77, 340, 10.1016/j.egypro.2015.07.048

2018, AIP Conf. Proc., 1999, 110002-1, 10.1063/1.5049311

2019, Sol. Energy Mater. Sol. Cells, 200, 110021, 10.1016/j.solmat.2019.110021

2016, Mol. Syst. Des. Eng., 1, 370, 10.1039/C6ME00041J

2018, Nat. Mater., 17, 820, 10.1038/s41563-018-0115-4

2018, IEEE J. Photovoltaics, 8, 1590, 10.1109/JPHOTOV.2018.2868015

2020, Sustainable Energy Fuels, 4, 852, 10.1039/C9SE00948E

2019, IEEE J. Photovoltaics, 9, 49, 10.1109/JPHOTOV.2018.2876999

1993, Extended spectral analysis of internal quantum efficiency, 147

2019, Determining the generation rate of silicon solar cells from reflection and transmission measurements by fitting an analytical optical model

2008, Prog. Photovoltaics, 16, 1, 10.1002/pip.769

B. Fischer, “Loss analysis of crystalline silicon solar cells using photoconductance and quantum efficiency measurements,” Ph.D. dissertation (Universität Konstanz, 2003).

1986, Solar Cells Operating Principles, Technology and System Applications

1982, Sol. Cells, 7, 337, 10.1016/0379-6787(82)90057-6

1984, IEEE Trans. Electron Devices, 31, 671, 10.1109/T-ED.1984.21588

1980, J. Appl. Phys., 51, 4518, 10.1063/1.328393

1993, Optimization of the back contact geometry for high efficiency solar cells, 315

1994, J. Appl. Phys., 75, 5391, 10.1063/1.355694

2010, J. Appl. Phys., 108, 13705, 10.1063/1.3437126

2016, IEEE J. Photovoltaics, 6, 1413, 10.1109/JPHOTOV.2016.2598267

2001, J. Appl. Phys., 89, 2491, 10.1063/1.1341211

1996, Prog. Photovoltaics, 4, 399, 10.1002/(SICI)1099-159X(199611/12)4:6%3C399::AID-PIP148%3E3.0.CO;2-4

1967, Solid-State Electron., 10, 1213, 10.1016/0038-1101(67)90063-9

2006, Prog. Photovoltaics, 14, 1, 10.1002/pip.637

2013, J. Appl. Phys., 113, 164502, 10.1063/1.4800840

2012, IEEE J. Photovoltaics, 2, 485, 10.1109/JPHOTOV.2012.2204958

2010, J. Appl. Phys., 108, 124510, 10.1063/1.3506706

2002, Sol. Energy Mater. Sol. Cells, 73, 189, 10.1016/S0927-0248(01)00124-6

1990, Photovoltaics: Coming of age, 1

2017, Validation of analytic modelling of local rear contacts in PERC/PERL solar cells

2013, Energy Procedia, 38, 22, 10.1016/j.egypro.2013.07.245

2018, Light scattering at random pyramid textures: Effects beyond geometric optics, AIP Conf. Proc., 1999, 30002, 10.1063/1.5049263

1981, J. Opt. Soc. Am., 71, 811, 10.1364/JOSA.71.000811

J. M. Greulich, “Simulation and characterization of novel large-area silicon solar cells for industrial production,” Ph.D. dissertation (Albert-Ludwigs-Universität Freiburg im Breisgau, 2014).

1987, J. Appl. Phys., 62, 243, 10.1063/1.339189

1994, Sunrays: A versatile ray tracing program for the photovoltaic community, 1339

1995, Quantum efficiency analysis of high efficiency solar cells with textured surfaces

1993, Sol. Energy Mater. Sol. Cells, 31, 133, 10.1016/0927-0248(93)90046-6

2013, IEEE J. Photovoltaics, 3, 175, 10.1109/JPHOTOV.2012.2215013

M. R. Vogt, “Development of physical models for the simulation of optical properties of solar cell modules,” Ph.D. thesis (Technische Informationsbibliothek, Hannover, 2015).

1990, Texture: A ray tracing program for the photovoltaic community, 426

1990, IEEE Trans. Electron Devices, 37, 337, 10.1109/16.46362

1998, Sol. Energy Mater. Sol. Cells, 51, 255, 10.1016/S0927-0248(97)00226-2

2005, Raysim 6.0: A free geometrical ray tracing program for silicon solar cells, 1165

2015, Opt. Express, 23, A1720, 10.1364/OE.23.0A1720

See www.pvlighehouse.com.au for “PV Lighthouse: SunSolve.”

1990, J. Appl. Phys., 67, 2944, 10.1063/1.345414

2014, J. Appl. Phys., 115, 93705, 10.1063/1.4867776

2019, IEEE Trans. Electron Devices, 66, 524, 10.1109/TED.2018.2882776

2003, J. Appl. Phys., 93, 1598, 10.1063/1.1529297

1999, Phys. Status Solidi B, 216, 975, 10.1002/(SICI)1521-3951(199912)216:2%3C975::AID-PSSB975%3E3.0.CO;2-N

2002, Phys. Rev. B, 66, 85201, 10.1103/PhysRevB.66.085201

2003, Phys. Status Solidi B, 236, 710, 10.1002/pssb.200301752

1998, J. Appl. Phys., 84, 3684, 10.1063/1.368545

2013, J. Appl. Phys., 114, 44508, 10.1063/1.4816694

2014, J. Appl. Phys., 116, 194505, 10.1063/1.4902066

1983, IEEE Trans. Electron Devices, 30, 764, 10.1109/t-ed.1983.21207

2012, Sol. Energy Mater. Sol. Cells, 106, 31, 10.1016/j.solmat.2012.06.018

1995, J. Appl. Phys., 78, 3185, 10.1063/1.360007

1995, Microelectron. J., 26, 273, 10.1016/0026-2692(95)98930-P

1993, Simulation of Semiconductor Devices and Processes, 393, 10.1007/978-3-7091-6657-4_97

1995, Optimisation of rear contact geometry of high-efficiency silicon solar cells using three dimensional numerical modelling, 447

J. O. Schumacher, “Numerical simulation of silicon solar cells with novel device structures,” Ph.D. dissertation (University of Konstanz, 2000).

M. Hermle, “Analyse neuartiger silizium- und III-V-solarzellen mittels simulation und experiment,” Ph.D. dissertation (Universität Konstanz, 2008).

2009, Highly predictive modelling of entire Si solar cells for industrial applications, 901

2012, Energy Procedia, 27, 203, 10.1016/j.egypro.2012.07.052

M. Rüdiger, “Analysis and simulation of crystalline silicon solar cells,” Ph.D. dissertation (University of Konstanz, Fraunhofer Verlag, Stuttgart, 2013).

N. Wöhrle, “Simulation und Verlustanalyse von lokal Rückseitenkontaktierten Silicium-Solarzellen,” Ph.D. dissertation (Albert-Ludwigs-Universität, 2016).

H. Steinkemper, “Numerical simulation of silicon solar cells,” Ph.D. dissertation (Universität Konstanz, 2017).

2015, Investigating the impact of parameter and process variations on multicrystalline PERC cell efficiency, 477

2017, Energy Procedia, 124, 207, 10.1016/j.egypro.2017.09.312

2013, IEEE Trans. Electron Devices, 60, 733, 10.1109/TED.2012.2231415

2017, Sol. Energy Mater. Sol. Cells, 173, 128, 10.1016/j.solmat.2017.05.012

1985, Solar cell modeling on personal computers, 703

1997, PC1D version 5. 32-bit solar cell modeling on personal computers, 207

2015, Sol. Energy Mater. Sol. Cells, 142, 47, 10.1016/j.solmat.2015.05.047

2016, Energy Procedia, 92, 60, 10.1016/j.egypro.2016.07.010

2008, Appl. Phys. Lett., 93, 173503, 10.1063/1.3006053

2013, J. Appl. Phys., 114, 204504, 10.1063/1.4832777

2014, Energy Procedia, 55, 17, 10.1016/j.egypro.2014.08.004

2017, IEEE J. Photovoltaics, 7, 1541, 10.1109/JPHOTOV.2017.2749007

2010, Prog. Photovoltaics, 18, 346, 10.1002/pip.1021

IEC, 2008, Photovoltaic Devices—Part 3. Measurement Principles for Terrestrial Photovoltaic (PV) Solar Devices with Reference Spectral Irradiance Data, 2nd ed

2013, Smart wire connection technology, 495

2012, Energy Procedia, 27, 227, 10.1016/j.egypro.2012.07.056

1995, Advantages of a new metallisation structure for the front side of solar cells, 1368

2019, 20005

2006, Silicon solar cells on ultra-thin substrates for large scale production, 601

2009, All-screen-printed 120-μM-thin large-area silicon solar cells applying dielectric rear passivation and laser-fired contacts reaching 18% efficiency, 1888

2009

2010, Pilot line processing of 18.6% efficient rear surface passivated large area solar cells, 1014

2010

2010

2011, Energy Procedia, 8, 415, 10.1016/j.egypro.2011.06.159

2011

2011

2012, Energy Procedia, 27, 95, 10.1016/j.egypro.2012.07.035

2012, Energy Procedia, 27, 624, 10.1016/j.egypro.2012.07.120

2012, 672

See https://www.solarserver.de/2014/04/11/photovoltaik-forschung-und-entwicklung-isfh-meldet-212-rekord-wirkungsgrad-fuer-industrielle-silizium-perc-solarzelle/ for “Solarserver, Photovoltaik-Forschung und -Entwicklung: ISFH meldet 21,2% Rekord-Wirkungsgrad für industrielle Silizium-PERC-Solarzelle.”>.

2014, Al-alloyed local contacts for industrial PERC cells by local printing, 3322

2014, Fine-line printed 5 busbar PERC solar cells with conversion efficiencies beyond 21%, 621

See https://www.pv-magazine.com/2015/07/17/solarworld-breaks-own-perc-record_100020256/ for “PV Magazine, SolarWorld breaks own PERC record.”

See https://www.pv-tech.org/news/trina-solar-sets-new-efficiency-record-for-mono-crystalline-silicon-solar-c for “PVTECH, Trina Solar Sets New Efficiency Record for Mono-Crystalline Silicon Solar Cell.”

See https://www.pv-tech.org/news/solarworld-reaches-22-efficiency-in-p-type-perc-cell for “PVTECH, SolarWorld Reaches 22% Efficiency in p-Type PERC Cell.”

See https://www.pv-magazine.com/2016/12/19/trina-solar-sets-new-22-61-mono-perc-efficiency-record/ for “PV Magazine, Trina Solar Sets New 22.61% Mono PERC Efficiency Record.”

See https://www.pv-magazine.com/2017/10/23/longi-claims-22-71-perc-efficiency-world-record/ for “PV Magazine, LONGi Claims 22.71% PERC Efficiency World Record.”

See https://www.pv-magazine.com/2018/05/09/jinkosolar-achieves-23-95-efficiency-for-p-type-mono-cell/ for “PV Magazine, JinkoSolar Achieves 23.95% Efficiency for p-Type Mono Cell.”

See http://taiyangnews.info/technology/23-6-perc-mono-cell-world-record-from-longi/ for “Taiyangnews, 23.6% PERC Mono Cell World Record from LONGi, Chinese Vertically-Integrated Solar Module Manufacturer LONGi Solar Breaks Its Own Conversion Efficiency World Record For Monocrystalline PERC Solar Cells.”

See http://taiyangnews.info/technology/jinkosolar-23-95-cell-efficiency-record/ for “Taiyangnews, JinkoSolar: 23.95% Cell Efficiency Record, JinkoSolar Uses Selective Emitter Technology and Novel Passivation to Design P-type Monocrystalline Cell That Reaches Record Efficiency of 23.95%.”

See http://taiyangnews.info/technology/longi-24-06-efficiency-perc-cell-world-record/ for “Taiyangnews, LONGi 24.06% Efficiency PERC Cell World Record, CPVT Confirms LONGi Produced First Bifacial Monocrystalline Silicon PERC Solar Cell Exceeding 24% On Commercial Wafer Size.”