Parvovirus B19 Infection in Human Bone Marrow Mesenchymal Stem Cells Affects Gene Expression of IL-6 and TNF-α and also Affects Hematopoietic Stem Cells Differentiation

Indian Journal of Hematology and Blood Transfusion - Tập 35 Số 4 - Trang 765-772 - 2019
Mahin Behzadi Fard1, Saeid Kaviani2, Amir Atashi3
11Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
2Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
3Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Weigel-Kelley KA, Yoder MC, Srivastava A (2003) Alpha5beta1 integrin as a cellular coreceptor for human parvovirus B19: requirement of functional activation of beta1 integrin for viral entry. Blood 102:3927–3933

Munakata Y, Saito-Ito T, Kumura-Ishii K, Huang J, Kodera T, Ishii T, Hirabayashi Y, Koyanagi Y, Sasaki T (2005) Ku80 autoantigen as a cellular coreceptor for human parvovirus B19 infection. Blood 106:3449–3456

Deiss V, Tratschin JD, Weitz M, Siegl G (1990) Cloning of the human parvovirus B19 genome and structural analysis of its palindromic termini. Virology 175:247–254

Bonvicini F, Manaresi E, Di Furio F, De Falco L, Gallinella G (2012) Parvovirus B19 DNA CpG dinucleotide methylation and epigenetic regulation of viral expression. PLoS ONE 7:e33316

Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL (2000) Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res 9:841–848

Haynesworth SE, Baber MA, Caplan AI (1996) Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 166:585–592

Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, KeilissBorok IV (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17:331–340

Thanunchai M, Hongeng S, Thitithanyanont A (2015) Mesenchymal stromal cells and viral infection. Stem Cells Int. https://doi.org/10.1155/2015/860950

Rosenfeld SJ, Young NS (1991) Viruses and bone marrow failure. Blood Rev 5:71–77

Rollín R, Alvarez-Lafuente R, Marco F, Jover JA, Hernández-García C, Rodríguez-Navas C (2007) Human parvovirus B19, varicella zoster virus, and human herpesvirus-6 in mesenchymal stem cells of patients with osteoarthritis: analysis with quantitative real-time polymerase chain reaction. Osteoarthritis Cartilage 15:475–478

Ozawa K, Kurtzman G, Young N (1987) Productive infection by B19 parvovirus of human erythroid bone marrow cells in vitro. Blood 70:384–391

Brown KE, Young NS (1996) Parvoviruses and bone marrow failure. Stem Cells 14:151–163. https://doi.org/10.1002/stem.140151

Cassinotti P, Burtonboy G, Fopp M, Siegl G (1997) Evidence for persistence of human parvovirus B19 DNA in bone marrow. J Med Virol 53:229–232

Moffatt S, Yaegashi N, Tada K, Tanaka N, Sugamura K (1998) Human parvovirus B19 nonstructural protein (NS1) induces apoptosis in erythroid lineage cells. J Virol 72:3018–3028

Koduri PR (1998) Novel cytomorphology of the giant proerythroblasts of parvovirus B19 infection. Am J Hematol 58(2):95–99

Osaki M, Matsubara K, Iwasaki T, Kurata T, Nigami H, Harigaya H, Baba K (1999) Severe aplastic anemia associated with human parvovirus B19 infection in a patient without underlying disease. Ann Hematol 78:83–86

Qian XH, Zhang GC, Jiao XY, Zheng YJ, Cao YH, Xu DL, Chen CS (2002) Aplastic anaemia associated with parvovirus B19 infection. Arch Dis Child 87:436–437

Yetgin S, Cetin M, Ozyürek E, Aslan D, Uçkan D (2004) Parvovirus B19 infection associated with severe aplastic anemia in an immunocompetent patient. Pediatr Hematol Oncol 21:223–226

Mishra B, Malhotra P, Ratho RK, Singh MP, Varma S, Varma N (2005) Human parvovirus B19 in patients with aplastic anemia. Am J Hematol 79:166–167

Kawakami C, Kono Y, Inoue A, Takitani K, Ikemoto T, Tamai H (2012) Severe bone marrow failure associated with human parvovirus B19 infection in a case with no underlying disorder. Int J Hematol 96:820–821

Sundin M, Lindblom A, Örvell C, Barrett AJ, Sundberg B, Watz E, Wikman A, Broliden K, Le Blanc K (2008) Persistence of human parvovirus B19 in multipotent mesenchymal stromal cells expressing the erythrocyte P antigen: implications for transplantation. Biol Blood Marrow Transplant 14:1172–1179

Raab U, Beckenlehner K, Lowin T, Niller HH, Doyle S, Modrow S (2002) NS1 protein of parvovirus B19 interacts directly with DNA sequences of the p6 promoter and with the cellular transcription factors Sp1/Sp3. Virology 293:86–93

Rouse BT, Sehrawat, (2010) Immunity and immunopathology to viruses: what decides the outcome? Nat Rev Immunol 10:514–526

Mogensen TH, Paludan SR (2001) Molecular pathways in virus-induced cyto-kine production. Microbiol Mol Biol Rev 65:131–135

Tanaka T, Narazaki M, Kishimoto T (2014) IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 6:a016295

Akira S, Hirano T, Taga T, Kishimoto T (1990) Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). FASEB J 4:2860–2867

Pascutti MF, Erkelens MN, Nolte MA (2016) Impact of viral infections on hematopoiesis: from beneficial to detrimental effects on bone marrow output. Front Immunol 7:364

Mitchell LA (2002) Parvovirus B19 nonstructural (NS1) protein as a transactivator of interleukin-6 synthesis: common pathway in inflammatory sequelae of human parvovirus infections? J Med Virol 67:267–274

Sol N, Le Junter J, Vassias I, Freyssinier JM, Thomas A, Prigent AF, Rudkin BB, Fichelson S, Morinet F (1999) Possible interactions between the NS-1 protein and tumor necrosis factor alpha pathways in erythroid cell apoptosis induced by human parvovirus B19. J Virol 73(10):8762–8770

Mortimer PP, Humphries RK, Moore JG, Purcell RH, Young NS (1983) A human. parvovirus-like virus inhibits haematopoietic colony formation in vitro. Nature 302:426–429

Means RT Jr, Dessypris EN, Krantz SB (1990) Inhibition of human colony-forming-unit erythroid by tumor necrosis factor requires accessory cells. J Clin Invest 86:538–541

Watanabe M, Shimamoto Y, Yamaguchi M, Inada S, Miyazaki S, Sato H (1994) Viral-associated haemophagocytosis and elevated serum TNF-alpha with parvovirus-B19-related pancytopenia in patients with hereditary spherocytosis. Clin Lab Haematol 16:179–182

Jongen-Lavrencic M, Peeters HR, Rozemuller H, Rombouts WJ, Martens AC, Vreugdenhil G, Pillay M, Cox PH, Bijser M, Brutel G, Breedveld FC, Swaak AJ (1996) IL-6-induced anaemia in rats: possible pathogenetic implications for anemia observed in chronic inflammations. Clin Exp Immunol 103:328–334

Clarke D, Johnson PW, Banks RE, Storr M, Kinsey SE, Johnson R, Morgan G, Gordon MY, Illingworth JM, Perren TJ, Selby PJ (1996) Effects of interleukin 6 administration on platelets and haemopoietic progenitor cells in peripheral blood. Cytokine 8:717–723

D’Hondt V, Humblet Y, Guillaume T, Baatout S, Chatelain C, Berlière M, Longueville J, Feyens AM, De Greve J, Van Oosterom A, Von Graffenried B, Donnez J, Symann M, (1995) Thrombopoietic effects and toxicity of interleukin-6 in patients with ovarian cancer before and after chemotherapy: a multicentric placebo-controlled, randomized phase Ib study. Blood 85:2347–2353

Pavese I, Satta F, Todi F, Di Palma M, Piergrossi P, Migliore A, Piselli P, Borghesi R, Mancino G, Brunetti E, Alimonti A (2010) High serum levels of TNF-a and IL-6 predict the clinical outcome of treatment with human recombinant erythropoietin in anaemic cancer patients. Ann Oncol 21:1523–1528