Parts-per-billion detection of carbon monoxide: A comparison between quartz-enhanced photoacoustic and photothermal spectroscopy

Photoacoustics - Tập 22 - Trang 100244 - 2021
Davide Pinto1, Harald Moser1, Johannes P. Waclawek1, Stefano Dello Russo2, Pietro Patimisco2, Vincenzo Spagnolo2, Bernhard Lendl1
1Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/164, 1060 Vienna, Austria
2PolySense Lab-Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Via Amendola 173, Bari, Italy

Tài liệu tham khảo

Mattiuzzi, 2020, Worldwide epidemiology of carbon monoxide poisoning, Hum. Exp. Toxicol., 39, 387, 10.1177/0960327119891214 Lambrini, 2018, Dangerous gases and poisoning: a literature review, J. Healthc. Commun., 03, 10.4172/2472-1654.100136 Townsend, 2002, Effects on health of prolonged exposure to low concentrations of carbon monoxide, Occup. Environ. Med., 59, 708, 10.1136/oem.59.10.708 Raub, 1999 Herriott, 1964, Off-axis paths in spherical mirror interferometers, Appl. Opt., 3, 523, 10.1364/AO.3.000523 White, 1942, Long optical paths of large aperture, J. Opt. Soc. Am., 32, 285, 10.1364/JOSA.32.000285 Dong, 2012, Ultra-sensitive carbon monoxide detection by using EC-QCL based quartz-enhanced photoacoustic spectroscopy, Appl. Phys. B, 107, 275, 10.1007/s00340-012-4949-1 Sampaolo, 2016, Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor, Opt. Express, 24, 15872, 10.1364/OE.24.015872 Sampaolo, 2019, Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser, Sens. Actuators B Chem., 282, 952, 10.1016/j.snb.2018.11.132 Spagnolo, 2012, Part-per-trillion level SF_6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation, Opt. Lett., 37, 4461, 10.1364/OL.37.004461 He, 2018, HCN ppt-level detection based on a QEPAS sensor with amplified laser and a miniaturized 3D-printed photoacoustic detection channel, Opt. Express, 26, 9666, 10.1364/OE.26.009666 Wilcken, 2003, Optimization of a microphone for photoacoustic spectroscopy, Appl. Spectrosc., 57, 1087, 10.1366/00037020360695946 Tomberg, 2018, Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy, Sci. Rep., 8, 1848, 10.1038/s41598-018-20087-9 Kuusela, 2007, Photoacoustic gas analysis using interferometric cantilever microphone, Appl. Spectrosc. Rev., 42, 443, 10.1080/00102200701421755 Bonilla-Manrique, 2019, Sub-ppm-Level Ammonia detection using photoacoustic spectroscopy with an optical microphone based on a phase interferometer, Sensors., 19, 2890, 10.3390/s19132890 Bilaniuk, 1997, Optical microphone transduction techniques, Appl. Acoust., 50, 35, 10.1016/S0003-682X(96)00034-5 Davis, 1981, Phase fluctuation optical heterodyne spectroscopy of gases, Appl. Opt., 20, 2539, 10.1364/AO.20.002539 Davis, 1980, Trace detection in gases using phase fluctuation optical heterodyne spectroscopy, Appl. Phys. Lett., 36, 515, 10.1063/1.91590 Campillo, 1982, Fabry–Perot photothermal trace detection, Appl. Phys. Lett., 41, 327, 10.1063/1.93524 Waclawek, 2016, 2f-wavelength modulation Fabry-Perot photothermal interferometry, Opt. Express, 24, 10.1364/OE.24.028958 Waclawek, 2019, Balanced-detection interferometric cavity-assisted photothermal spectroscopy, Opt. Express, 27, 10.1364/OE.27.012183 Flygare, 1968, Molecular relaxation, Acc. Chem. Res., 1, 121, 10.1021/ar50004a004 Berne, 1976 Bialkowski, 1996 Sigrist, 1986, Laser generation of acoustic waves in liquids and gases, J. Appl. Phys., 60, R83, 10.1063/1.337089 Patimisco, 2019, Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy, Opt. Express, 27, 1401, 10.1364/OE.27.001401 Gordon, 2017, The HITRAN2016 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf., 203, 3, 10.1016/j.jqsrt.2017.06.038 Patimisco, 2018, Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone modes, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 65, 1951, 10.1109/TUFFC.2018.2853404 Patimisco, 2018, Recent advances in quartz enhanced photoacoustic sensing, Appl. Phys. Rev., 5, 10.1063/1.5013612 Ogawa, 2013, Open end correction for a flanged circular tube using the diffusion process, Eur. J. Phys., 34, 1159, 10.1088/0143-0807/34/5/1159 Dello Russo, 2019, Acoustic coupling between resonator tubes in quartz-enhanced photoacoustic spectrophones employing a large prong spacing tuning fork, Sensors., 19, 4109, 10.3390/s19194109 Hodgson, 2005 Fischer, 2016, Optical microphone hears ultrasound, Nat. Photonics, 10, 356, 10.1038/nphoton.2016.95 Patimisco, 2016, Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy, Opt. Express, 24, 10.1364/OE.24.025943 Giglio, 2016, Allan Deviation Plot as a tool for quartz-enhanced photoacoustic sensors noise analysis, IEEE trans, Ultrason. Ferroelectr. Freq. Control., 63, 555, 10.1109/TUFFC.2015.2495013 Hopcroft, 2020 Werle, 2011, Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence, Appl. Phys. B, 102, 313, 10.1007/s00340-010-4165-9 Li, 2019, Ppb-level quartz-enhanced photoacoustic detection of carbon monoxide exploiting a surface grooved tuning fork, Anal. Chem., 91, 5834, 10.1021/acs.analchem.9b00182