Parts-per-billion detection of carbon monoxide: A comparison between quartz-enhanced photoacoustic and photothermal spectroscopy
Tài liệu tham khảo
Mattiuzzi, 2020, Worldwide epidemiology of carbon monoxide poisoning, Hum. Exp. Toxicol., 39, 387, 10.1177/0960327119891214
Lambrini, 2018, Dangerous gases and poisoning: a literature review, J. Healthc. Commun., 03, 10.4172/2472-1654.100136
Townsend, 2002, Effects on health of prolonged exposure to low concentrations of carbon monoxide, Occup. Environ. Med., 59, 708, 10.1136/oem.59.10.708
Raub, 1999
Herriott, 1964, Off-axis paths in spherical mirror interferometers, Appl. Opt., 3, 523, 10.1364/AO.3.000523
White, 1942, Long optical paths of large aperture, J. Opt. Soc. Am., 32, 285, 10.1364/JOSA.32.000285
Dong, 2012, Ultra-sensitive carbon monoxide detection by using EC-QCL based quartz-enhanced photoacoustic spectroscopy, Appl. Phys. B, 107, 275, 10.1007/s00340-012-4949-1
Sampaolo, 2016, Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor, Opt. Express, 24, 15872, 10.1364/OE.24.015872
Sampaolo, 2019, Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser, Sens. Actuators B Chem., 282, 952, 10.1016/j.snb.2018.11.132
Spagnolo, 2012, Part-per-trillion level SF_6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation, Opt. Lett., 37, 4461, 10.1364/OL.37.004461
He, 2018, HCN ppt-level detection based on a QEPAS sensor with amplified laser and a miniaturized 3D-printed photoacoustic detection channel, Opt. Express, 26, 9666, 10.1364/OE.26.009666
Wilcken, 2003, Optimization of a microphone for photoacoustic spectroscopy, Appl. Spectrosc., 57, 1087, 10.1366/00037020360695946
Tomberg, 2018, Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy, Sci. Rep., 8, 1848, 10.1038/s41598-018-20087-9
Kuusela, 2007, Photoacoustic gas analysis using interferometric cantilever microphone, Appl. Spectrosc. Rev., 42, 443, 10.1080/00102200701421755
Bonilla-Manrique, 2019, Sub-ppm-Level Ammonia detection using photoacoustic spectroscopy with an optical microphone based on a phase interferometer, Sensors., 19, 2890, 10.3390/s19132890
Bilaniuk, 1997, Optical microphone transduction techniques, Appl. Acoust., 50, 35, 10.1016/S0003-682X(96)00034-5
Davis, 1981, Phase fluctuation optical heterodyne spectroscopy of gases, Appl. Opt., 20, 2539, 10.1364/AO.20.002539
Davis, 1980, Trace detection in gases using phase fluctuation optical heterodyne spectroscopy, Appl. Phys. Lett., 36, 515, 10.1063/1.91590
Campillo, 1982, Fabry–Perot photothermal trace detection, Appl. Phys. Lett., 41, 327, 10.1063/1.93524
Waclawek, 2016, 2f-wavelength modulation Fabry-Perot photothermal interferometry, Opt. Express, 24, 10.1364/OE.24.028958
Waclawek, 2019, Balanced-detection interferometric cavity-assisted photothermal spectroscopy, Opt. Express, 27, 10.1364/OE.27.012183
Flygare, 1968, Molecular relaxation, Acc. Chem. Res., 1, 121, 10.1021/ar50004a004
Berne, 1976
Bialkowski, 1996
Sigrist, 1986, Laser generation of acoustic waves in liquids and gases, J. Appl. Phys., 60, R83, 10.1063/1.337089
Patimisco, 2019, Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy, Opt. Express, 27, 1401, 10.1364/OE.27.001401
Gordon, 2017, The HITRAN2016 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf., 203, 3, 10.1016/j.jqsrt.2017.06.038
Patimisco, 2018, Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone modes, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 65, 1951, 10.1109/TUFFC.2018.2853404
Patimisco, 2018, Recent advances in quartz enhanced photoacoustic sensing, Appl. Phys. Rev., 5, 10.1063/1.5013612
Ogawa, 2013, Open end correction for a flanged circular tube using the diffusion process, Eur. J. Phys., 34, 1159, 10.1088/0143-0807/34/5/1159
Dello Russo, 2019, Acoustic coupling between resonator tubes in quartz-enhanced photoacoustic spectrophones employing a large prong spacing tuning fork, Sensors., 19, 4109, 10.3390/s19194109
Hodgson, 2005
Fischer, 2016, Optical microphone hears ultrasound, Nat. Photonics, 10, 356, 10.1038/nphoton.2016.95
Patimisco, 2016, Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy, Opt. Express, 24, 10.1364/OE.24.025943
Giglio, 2016, Allan Deviation Plot as a tool for quartz-enhanced photoacoustic sensors noise analysis, IEEE trans, Ultrason. Ferroelectr. Freq. Control., 63, 555, 10.1109/TUFFC.2015.2495013
Hopcroft, 2020
Werle, 2011, Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence, Appl. Phys. B, 102, 313, 10.1007/s00340-010-4165-9
Li, 2019, Ppb-level quartz-enhanced photoacoustic detection of carbon monoxide exploiting a surface grooved tuning fork, Anal. Chem., 91, 5834, 10.1021/acs.analchem.9b00182