Partitions into Beatty sequences
Tóm tắt
Let
$$\alpha >1$$
be an irrational number. We establish asymptotic formulas for the number of partitions of n into summands and distinct summands, chosen from the Beatty sequence
$$(\lfloor \alpha m\rfloor )$$
. This improves some results of Erdös and Richmond established in 1977.
Tài liệu tham khảo
Erdős, P., Richmond, B.: Partitions into summands of the form \([m\alpha ]\). In: Proceedings of the Seventh Manitoba Conference on Numerical Mathematics and Computing (Univ. Manitoba, Winnipeg, Man., 1977), Congress. Numer., XX, pp. 371–377. Utilitas Math., Winnipeg, Man. (1978)
Hardy, G.H., Littlewood, J.E.: Littlewood. Some problems of Diophantine approximation: the lattice-points of a right-angled triangle. (Second memoir.). Abh. Math. Sem. Univ. Hamburg 11(1), 211–248 (1922)
Hardy, G.H., Ramanujan, S.: Asymptotic formulaae in combinatory analysis. Proc. Lond. Math. Soc. 2(17), 75–115 (1918)
Ingham, A.E.: A Tauberian theorem for partitions. Ann. Math. 2(42), 1075–1090 (1941)
Meinardus, G.: Asymptotische Aussagen über Partitionen. Math. Z. 59, 388–398 (1954)
Ostrowski, A.: Bemerkungen zur Theorie der Diophantischen Approximationen. Abh. Math. Sem. Univ. Hamburg 1(1), 77–98 (1922)
Richmond, B.: A general asymptotic result for partitions. Can. J. Math. 27(5), 1083–1091 (1975)
Roth, K.F., Szekeres, G.: Some asymptotic formulae in the theory of partitions. Q. J. Math. Oxford Ser. (2) 5, 241–259 (1954)
Weisstein, E.W.: “Irrationality Measure.” From MathWorld—A Wolfram Web Resource (2020)