Partitioning pairs of countable ordinals
Tóm tắt
Từ khóa
Tài liệu tham khảo
Erdös, P., Hajnal, A. &Milner, E., On the complete subgraphs of graphs defined by systems of sets.Acta Math. Hungar., 17 (1966), 159–229.
Galvin, F., UCLA Combinatorics Seminar Notes, 1970.
Galvin, F. &Shelah, S., Some counterexamples in the partition calculus.J. Combin. Theory, 15 (1973), 167–174.
Hajnal, A. & Komjáth, P., Some higher-gap examples in combinatorial set theory. To appear.
Hajnal, A., Kanamori, A. & Shelah, S., Regressive partitions relations for infinite cardinals. To appear.
Jensen, R. B., The fine structure of the constructible hierarchy.Ann. Math. Logic, 4 (1972), 229–308.
Kunen, K., Combinatorics, inHandbook of Math. Logic (J. Barwise ed.). North-Holland, Amsterdam 1977.
—,Set theory, North-Holland, Amsterdam 1980.
Kurepa, G., Ensembles linéares et une classe de tableaux ramifiès (tableaux ramifiès de M. Aronszajn).Publ. Math. Univ. Belgrade, VI (1937), 129–160.
—, Transformations monotones des ensembles partiellement ordonnès.Rev. Cienc. (Lima), 437 (1943), 483–500.
Laver, R., Partition relations for uncountable cardinals.Infinite and Finite Sets, Vol. II, Colloq. Math. Soc. Janos Bolyai, Vol 10. North-Holland, Amsterdam 1975, 1025–1042.
Shelah, S., Decomposing Uncountable Squares to Countably Many Chains.J. Combin. Theory Ser. A, 21 (1976), 110–114.
Shelah, S. Was Sierpinski right? To appear.
Shelah, S. A graph which embedds all small graphs on any large set of vertices. To appear.
Shelah, S. Strong negative partition above the continuum. To appear.
Shelah, S. & Stepráns, J., Extra-specialp-groups. To appear.
Shelah, S. & Stepráns, gnJ., A nonseparable Banach space with few operations. To appear.
Sierpiński, W., Sur un problème de la thèorie des relations.Ann. Scuola Norm. Sup. Pisa (2), 2 (1933), 285–287.
Sierpiński, W. Hypothèse du continu. Monografje Matematyczne, vol. 4. Warszawa-Lwów 1934.
Todorcevic, S., A combinatorial property of sets of irrationals, circulated notes, July 1984.
Todorcevic, S. Colouring pairs of countable ordinals. Berkeley Seminar Notes, Jan. 1985.
—, Remarks on cellularity in products.Compositio Math., 57 (1986), 357–372.
Todorcevic, S. & Velickovic, B., Martin's axiom and partitions.Compositio Math. To appear.
Velickovic, B., Doctoral dissertation, Univ. of Wisconsin at Madison, 1986.
Warren, N. M., Doctoral disseration, Univ. of Wisconsin at Madison, 1969;Proc. Amer. Math. Soc., 3 (1972), 599–606.