Partisan public health: how does political ideology influence support for COVID-19 related misinformation?

Journal of Computational Social Science - Tập 3 Số 2 - Trang 319-342 - 2020
Nicholas Francis Havey1
1University of California, Los Angeles, Beverly Hills, CA, 90210, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Nisbet, E. C., Cooper, K. E., & Garrett, R. K. (2015). The partisan brain: How dissonant science messages lead conservatives and liberals to (dis) trust science. The ANNALS of the American Academy of Political and Social Science, 658(1), 36–66.

Ahmed, W., Vidal-Alaball, J., Downing, J., & Seguí, F.L. (2020). Dangerous messages or satire? analysing the conspiracy theory linking 5g to covid-19 through social network analysis. J. Med Internet Res.

Shahsavari, S., Holur, P., Tangherlini, T. R., & Roychowdhury, V. (2020). Conspiracy in the time of Corona: Automatic detection of Covid-19 conspiracy theories in social media and the news. arXiv preprint. arXiv:2004.13783.

Chew, C., & Eysenbach, G. (2010). Pandemics in the age of Twitter: content analysis of Tweets during the 2009 H1N1 outbreak. PLoS ONE, 5(11), e14118.

Constantinou, M., Kagialis, A. & Karekla, M., (2020). Is science failing to pass its message to people? Reasons and risks behind conspiracy theories and myths regarding COVID-19. Reasons and risks behind conspiracy theories and myths regarding COVID-19 (April 16, 2020).

McNeill, A., Harris, P. R., & Briggs, P. (2016). Twitter influence on UK vaccination and antiviral uptake during the 2009 H1N1 pandemic. Frontiers in public health, 4, 26.

Bimber, B., & Gil de Zúñiga, H. (2020). The unedited public sphere. New Media & Society, 22(4), 700–715.

Bright, J. (2018). Explaining the emergence of political fragmentation on social media: The role of ideology and extremism. Journal of Computer-Mediated Communication, 23(1), 17–33.

Colleoni, E., Rozza, A., & Arvidsson, A. (2014). Echo chamber or public sphere? Predicting political orientation and measuring political homophily in Twitter using big data. Journal of Communication, 64(2), 317–332.

Barberá, P., Jost, J. T., Nagler, J., Tucker, J. A., & Bonneau, R. (2015). Tweeting from left to right: Is online political communication more than an echo chamber? Psychological Science, 26(10), 1531–1542.

Himelboim, I., McCreery, S., & Smith, M. (2013). Birds of a feather tweet together: Integrating network and content analyses to examine cross-ideology exposure on Twitter. Journal of Computer-Mediated Communication, 18(2), 154–174.

Gil de Zúñiga, H., Koc Michalska, K., & Römmele, A. (2020). Populism in the era of Twitter: How social media contextualized new insights into an old phenomenon. New Media & Society, 22(4), 585–594.

Ernst, N., Engesser, S., Büchel, F., Blassnig, S., & Esser, F. (2017). Extreme parties and populism: An analysis of Facebook and Twitter across six countries. Information, Communication & Society, 20(9), 1347–1364.

Hahl, O., Kim, M., & Zuckerman Sivan, E. W. (2018). The authentic appeal of the lying demagogue: Proclaiming the deeper truth about political illegitimacy. American Sociological Review, 83(1), 1–33.

Swire, B., Berinsky, A. J., Lewandowsky, S., & Ecker, U. K. (2017). Processing political misinformation: comprehending the Trump phenomenon. Royal Society Open Science, 4(3), 160802.

Wells, C., Shah, D., Lukito, J., Pelled, A., Pevehouse, J. C., & Yang, J. (2020). Trump, Twitter, and news media responsiveness: A media systems approach. New Media & Society, 22(4), 659–682.

Zerback, T., Töpfl, F., & Knöpfle, M. (2020). The disconcerting potential of online disinformation: Persuasive effects of astroturfing comments and three strategies for inoculation against them. New Media & Society, 1461444820908530.

Lewandowsky, S., Ecker, U. K., & Cook, J. (2017). Beyond misinformation: Understanding and coping with the “post-truth” era. Journal of Applied Research in Memory and Cognition, 6(4), 353–369.

Ribeiro, M. H., Calais, P. H., Almeida, V. A., & Meira Jr, W. (2017). " Everything I disagree with is #fakenews": Correlating political polarization and spread of misinformation. arXiv preprint arXiv:1706.05924.

Roets, A. (2019). Is there an ideological asymmetry in the moral approval of spreading misinformation by politicians? Personality and Individual Differences, 143, 165–169.

Weeks, B. E., Kim, D. H., Hahn, L. B., Diehl, T. H., & Kwak, N. (2019). Hostile media perceptions in the age of social media: Following politicians, emotions, and perceptions of media bias. Journal of Broadcasting & Electronic Media, 63(3), 374–392.

Kahne, J., & Bowyer, B. (2017). Educating for democracy in a partisan age: Confronting the challenges of motivated reasoning and misinformation. American Educational Research Journal, 54(1), 3–34.

Weeks, B. E., & Gil de Zúñiga, H. (2019). What’s next six? Observations for the future of political misinformation research. American Behavioral Scientist. https://doi.org/10.1177/0002764219878236

Bail, C. A. (2014). The cultural environment: Measuring culture with big data. Theory and Society, 43(3–4), 465–482.

Steinert-Threlkeld, Z. C. (2018). Twitter as Data. Cambrindge: Cambridge University Press.

Christensen, D., & Garfias, F. (2018). Can you hear me now? How communication technology affects protest and repression. Quarterly Journal of Political Science, 13(1), 89.

Freelon, D., McIlwain, C. D., & Clark, M. (2016). Beyond the hashtags: # Ferguson, # Blacklivesmatter, and the online struggle for offline justice. Center for Media & Social Impact, American University, Forthcoming.

Little, A. T. (2016). Communication technology and protest. The Journal of Politics, 78(1), 152–166.

Steinert-Threlkeld, Z. C. (2017). Spontaneous collective action: Peripheral mobilization during the Arab Spring. American Political Science Review, 111(2), 379–403.

Blevins, J. L., Lee, J. J., McCabe, E. E., & Edgerton, E. (2019). Tweeting for social justice in #Ferguson: Affective discourse in Twitter hashtags. New Media & Society, 21(7), 1636–1653.

Modrek, S., & Chakalov, B. (2019). The# MeToo movement in the United States: text analysis of early twitter conversations. Journal of Medical Internet Research, 21(9), e13837.

Saxton, G. D., Niyirora, J., Guo, C., & Waters, R. (2015). # AdvocatingForChange: The strategic use of hashtags in social media advocacy. Advances in Social Work, 16(1), 154–169.

Abdelrazeq, A., Janßen, D., Tummel, C., Jeschke, S., & Richert, A. (2016). Sentiment analysis of social media for evaluating universities. In Automation, Communication and Cybernetics in Science and Engineering (pp. 233–251). Springer, Cham.

Abeywardena, I. S. (2014). Public opinion on OER and MOOC: A sentiment analysis of twitter data. In International Conference on Open and Flexible Education (pp. 296–307).

Hixson, T. (2020). Reactions vs. reality: Using sentiment analysis to measure university students’ responses to learning ArcGIS. Journal of Map & Geography Libraries, 1–14.

Saif, H., He, Y., & Alani, H. (2012). Semantic sentiment analysis of twitter. In International Semantic Web Conference (pp. 508–524). Springer, Berlin.

Attri, I., & Dutta, M. (2020). Review of various sentiment analysis approaches. In Proceedings of International Conference on IoT Inclusive Life (ICIIL 2019), NITTTR Chandigarh, India (pp. 223–234). Springer, Singapore.

Jena, R. K. (2019). Sentiment mining in a collaborative learning environment: capitalising on big data. Behaviour & Information Technology, 38(9), 986–1001.

Kumar, A., & Sebastian, T. M. (2012). Sentiment analysis on twitter. International Journal of Computer Science Issues (IJCSI), 9(4), 372.

Kumar, A., & Jaiswal, A. (2020). Systematic literature review of sentiment analysis on Twitter using soft computing techniques. Concurrency and Computation: Practice and Experience, 32(1), e5107.

Pak, A., & Paroubek, P. (2010, May). Twitter as a corpus for sentiment analysis and opinion mining. In LREc (Vol. 10, No. 2010, pp. 1320–1326).

Abdulsalami, A. O., Ahmad, B. I., Umar, M. A., Abubakar, A. H., Jauro, F., Kufena, A. M., & Ekoja, E. A. (2017, November). Sentiment analysis of students' perception on the use of smartphones: A cross sectional study. In 2017 Second International Conference on Informatics and Computing (ICIC) (pp. 1–5). IEEE.

Zhang, L., Ghosh, R., Dekhil, M., Hsu, M., & Liu, B. (2011). Combining lexicon-based and learning-based methods for Twitter sentiment analysis. HP Laboratories, Technical Report HPL-2011, 89.

Liu, B. (2012). Sentiment analysis and opinion mining: synthesis lectures on human language technologies # 16. San Rafael: Morgan and Claypool Publishers.

Jain, S., Sharma, V., & Kaushal, R. (2016, September). Towards automated real-time detection of misinformation on Twitter. In 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 2015–2020). IEEE.

Kušen, E., & Strembeck, M. (2018). Politics, sentiments, and misinformation: An analysis of the Twitter discussion on the 2016 Austrian Presidential Elections. Online Social Networks and Media, 5, 37–50.

Zollo, F., Novak, P. K., Del Vicario, M., Bessi, A., Mozetič, I., Scala, A., Caldarelli, G. & Quattrociocchi, W. (2015). Emotional dynamics in the age of misinformation. PloS one, 10(9), p.e0138740.

Barberá, P. (2015). Birds of the same feather tweet together: Bayesian ideal point estimation using Twitter data. Political Analysis, 23(1), 76–91.

Sinatra, G. M., & Lombardi, D. (2020). Evaluating sources of scientific evidence and claims in the post-truth era may require reappraising plausibility judgments. Educational Psychologist, 1–12.

Liu, B., Hu, M., & Cheng, J. (2005, May). Opinion observer: analyzing and comparing opinions on the web. In Proceedings of the 14th International Conference on World Wide Web (pp. 342–351).

Smith, M., McAweeney, E., & Ronzaud, L. (2020). The COVID-19 “Infodemic”. Technical report, Apr. 2020. Library Catalog: graphika.com.

Graham, T., Bruns, A., Zhu, G., & Campbell, R. (2020). Like a virus: The coordinated spread of Coronavirus disinformation.

Noble, S. U. (2018). Algorithms of Oppression: How Search Engines Reinforce Racism. New York: NYU Press.