Particulate modeling of cementation effects on small and large strain behaviors in granular material

Granular Matter - Tập 19 Số 1 - 2017
Zhangwei Ning1, Ali Khoubani2, T. Matthew Evans2
1SIXENSE - USA/Canada Area, 1448 Elliott Ave. W., Seattle, WA, 98119, USA
2School of Civil and Construction Engineering, Oregon State University, 101 Kearney Hall, Corvallis, OR 97331, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Acar, Y.B., El-Tahir, A.E.: Low strain dynamic properties of artificially cemented sand. J. Geotech. Eng. 112, 1001–1015 (1986)

Baig, S., Picornell, M., Nazarian, S.: Low strain shear moduli of cemented sands. J. Geotech. Geoenviron. Eng. 123(6), 540–545 (1997)

Brandt, H.: Study of speed of sound in porous granular media. ASME Trans. J. Appl. Mech. 22(4), 479–486 (1955)

Chang, C.S., Misra, A., Sundaram, S.S.: Properties of granular packings under low amplitude cyclic loading. Soil Dyn. Earthq. Eng. 10(4), 201–211 (1991)

Chang, T.S., Woods, R.D.: Effect of particle contact bond on shear modulus. J. Geotech. Eng. 118(8), 1216–1233 (1992)

Chantawarangul, K.: Numerical Simulations of Three-Dimensional Granular Assemblies. PhD Thesis, University of Waterloo, Ontario, Canada (1993)

DeJong, J.T., Fritzges, M.B., Nusslein, K.: Microbially induced cementation to control sand response to undrained shear. J. Geotech. Geoenviron. Eng. 132(11), 1381–1392 (2006)

Duffy, J., Mindlin, R.D.: Stress-strain relations and vibrations of granular medium. ASME Trans. J. Appl. Mech. 24(4), 585–593 (1957)

Evans, T.M., Frost, J.D.: Multiscale investigation of shear bands in sand: physical and numerical experiments. Int. J. Numer. Anal. Methods Geomech. 34(15), 1634–1650 (2010)

Evans, T.M., Lee, J., Yun, T.S., Valdes, J.R.: Effective thermal conductivity in granular mixtures: numerical studies. In: Fifth International Symposium on Deformation Characteristics of Geomaterials, Seoul, Korea, IS-Seoul, pp. 815–820 (2011)

Evans, T.M., Ning, Z.: Wave Propagation in Assemblies of Cemented Spheres. In: Powders and Grains 2013: Proceedings of the 7th International Conference on Micromechanics of Granular Media, American Institute of Physics, vol. 1542(1), pp. 233–236 (2013)

Evans, T.M., Khoubani, A., Montoya, B.M.: Simulating mechanical response in bio-cemented sands. In: Oka, F., Murakami, A., Uzuoka, R., Kimoto, S. (eds.) Computer Methods and Recent Advances in Geomechanics, pp. 1569–1574. CRC Press, Boca Raton (2014)

Evans, T.M., Zhao, X.: A discrete numerical study of the effect of loading conditions on granular material response/IS-Atlanta. In: Fourth International Symposium on Deformation Characteristics of Geomaterials, Atlanta, GA, September 22–24 (2008)

Fazekas, S., Török, J., Kertész, J., Wolf, D.E.: Morphologies of three-dimensional shear bands in granular media. Phys. Rev. E 74(3), 031303 (1–6) (2006)

Fernandez, A., Santamarina, J.C.: The effect of cementation on the small strain parameters of sands. Can. Geotech. J. 38(1), 191–199 (2001)

Goddard, J.D.: Nonlinear elasticity and pressure-dependent wave speeds in granular media. Proc. R. Soc. Lond. A Math. Phys. Sci. 430(1878), 105–131 (1990)

Hardin, B.O., Richart, J.F.E.: Elastic wave velocities in granular soils. ASCE Proc. J. Soil Mech. Found. Div. 89(SM1, Part 1), 33–65 (1963)

Itasca.: PFC3D: Particle Flow Code in 3 Dimensions. 4.0 (2009)

Jiang, M., Zhang, W., Sun, Y.: An investigation on loose cemented granular materials via DEM analyses. Granul. Matter 15, 65–84 (2013)

Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

Kuwabara, G., Kono, K.: Restitution coefficient in a collision between two spheres. Jpn. J. Appl. Phys. 26(8), 1230–1233 (1987)

Lade, P.V., Overton, D.D.: Cementation effects in frictional materials. J. Geotech. Eng. 115, 1373–1387 (1989)

Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Pergamon, New York (1970)

Lee, J., Santamarina, J.C.: Bender elements: performance and signal interpretation. J. Geotech. Geoenviron. Eng. 131(9), 1063–1070 (2005)

Mitchell, J.K., Soga, K.: Fundamentals of Soil Behavior, 3rd edn. Wiley, New York (2005)

Mohsin, A.K.M., Airey, D.W.: Automating G$$_{max}$$ measurement in triaxial tests. Deformation Characteristics of Geomaterials IS Lyon, Taylor & Francis, Lyon, France, pp. 73–80 (2003)

Montoya, B.M., DeJong, J.T., Boulanger, R.W.: Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Géotechnique 63(4), 302–312 (2013)

Ng, T.T.: Discrete element simulation of the critical state of a granular material. Int. J. Geomech. 9(5), 209–2016 (2009)

Ning, Z., Evans, T.M.: Discrete element method study of shear wave propagation in granular soil. In: Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, France, Paris, pp. 1031–1034 (2013)

Ning, Z., Khoubani, A., Evans, T.M.: Shear wave propagation in granular assemblies. Comput. Geotech. 69, 615–626 (2015)

Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004)

Radjai, F., Wolf, D.E., Jean, M., Moreau, J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1), 61–64 (1998)

Rothenburg, L., Kruyt, N.P.: Critical state and evolution of coordination number in simulated granular materials. Int. J. Solids Struct. 41(21), 5763–5774 (2004)

Sadd, M.H., Adhikari, G., Cardoso, F.: DEM simulation of wave propagation in granular materials. Powder Technol. 109(1–3), 222–233 (2000)

Santamarina, J.C., Klein, K., Fam, M.: Soils and Waves. Wiley, Chichester (2001)

Saxena, S.K., Lastrico, R.M.: Static properties of lightly cemented sand. J. Geotech. Eng. Div. 104(12), 1449–1465 (1978)

Saxena, S.K., Avramidis, A.S., Reddy, K.R.: Dynamic moduli and damping ratios for cemented sands at low strains. Can. Geotech. J. 25(2), 353–368 (1988)

Schnaid, F., Prietto, P., Consoli, N.: Characterization of cemented sand in triaxial compression. J. Geotech. Geoenviron. Eng. (2001). doi: 10.1061/(ASCE)1090-0241(2001)127:10(857)

Sharma, R., Baxter, C., Jander, M.: Relationship between shear wave velocity and stresses at failure for weakly cemented sands during drained triaxial compression. Soils Found. 51(4), 761–771 (2011)

Sitharam, T.G., Vinod, J.S., Rothenburg, L.: Shear behavior of glass beads using DEM. In: Powders and Grains, pp. 257–260 (2005)

Trent, B.C., Margolin, L.G.: Modeling fracture in cemented granular materials. Fracture Mechanics Applied to Geotechnical Engineering (ASCE Publications. Proc, ASCE National Convention, Atlanta) (1994)

Walton, K.: The effective elastic moduli of a random packing of spheres. J. Mech. Phys. Solids 35(2), 213–226 (1987)

Wang, Y.H., Leung, S.C.: A particulate-scale investigation of cemented sand behavior. Can. Geotech. J. 45, 29–44 (2008)

Wang, Y.H., Leung, S.C.: Characterization of cemented sand by experimental and numerical investigations. J. Geotech. Geoenviron. Eng. 134(7), 992–1004 (2008)

Weuster, A., Strege, S., Brendel, L., Zetzener, H., Wolf, D.E., Kwade, A.: Shear flow of cohesive powders with contact crystallization: experiment, model and calibration. Granul. Matter 17(2), 271–286 (2015)

Woodcock, N.H.: Specification of fabric shapes using an eigenvalue method. Geol. Soc. Am. Bull. 88, 1231–1236 (1977)

Yanagisawa, E.: Influence of void ratio and stress condition on the dynamic shear modulus of granular media. In: Jenkins, J.T., Satake, M. (eds.) Advances in the Mechanics and Flow of Granular Materials, pp. 947–960. Elsevier, Amsterdam (1983)

Yang, J., Gu, X.Q.: Shear stiffness of granular material at small strains: does it depend on grain size. Géotechnique 63(2), 165–179 (2012)

Yun, T.S., Santamarina, J.C.: Decementation, softening, and collapse: changes in small-strain shear stiffness in K$$_{0}$$ loading. J. Geotech. Geoenviron. Eng. 131(3), 350–358 (2005)

Yun, T.S., Evans, T.M.: Three-dimensional random network model for thermal conductivity in particulate materials. Comput. Geotech. 37(7–8), 991–998 (2010)

Zhao, X., Evans, T.M.: Discrete simulations of laboratory loading conditions. Int. J. Geomech. 9(4), 169–178 (2009)