Particle swarm optimization using dynamic tournament topology
Tài liệu tham khảo
Powell, 1964, An efficient method for finding the minimum of a function of several variables without calculating derivatives, Comput. J., 7, 155, 10.1093/comjnl/7.2.155
Kennedy, 1995, A new optimizer using particle swarm theory, 39
Randall, 2011, Differential evolution for a constrained combinatorial optimisation problem, Int. J. Metaheurist., 1, 279, 10.1504/IJMHEUR.2011.044302
David, 2013, Gravitational search algorithm-based design of fuzzy control systems with a reduced parametric sensitivity, Inform. Sci., 247, 154, 10.1016/j.ins.2013.05.035
Zhou, 2016, Fuzzy clustering with the entropy of attribute weights, Neurocomputing, 198, 125, 10.1016/j.neucom.2015.09.127
Savio, 2014, A novel enumeration strategy of maximal bicliques from 3-dimensional symmetric adjacency matrix, Int. J. Artif. Intell., 12, 42
Ciurana, 2009, Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel, Mater. Manuf. Process., 24, 358, 10.1080/10426910802679568
Eslami, 2011, Power system stabilizer design using hybrid multi-objective particle swarm optimization with chaos, J. Central South Univ. Technol., 18, 1579, 10.1007/s11771-011-0875-3
Hung, 2011, Adaptive Fuzzy-GARCH model applied to forecasting the volatility of stock markets using particle swarm optimization, Inform. Sci., 181, 4673, 10.1016/j.ins.2011.02.027
Lim, 2008, A SAR autofocus algorithm based on particle swarm optimization, Prog. Electromagn. Res. B, 1, 159, 10.2528/PIERB07102501
Nguyen, 2011, Real-time estimation of sensor node's position using particle swarm optimization with log-barrier constraint, IEEE Trans. Instrum. Meas., 60, 3619, 10.1109/TIM.2011.2135030
del Valle, 2008, Particle swarm optimization: basic concepts, variants and applications in power systems, IEEE Trans. Evol. Comput., 12, 171, 10.1109/TEVC.2007.896686
Zainud-Deen, 2008, Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques, Prog. Electromagn. Res. B, 3, 35, 10.2528/PIERB07112703
Liang, 2005, Dynamic multi-swarm particle swarm optimizer, 124
Mendes, 2004, The fully informed particle swarm: simpler, maybe better, IEEE Trans. Evol. Comput., 8, 204, 10.1109/TEVC.2004.826074
Kennedy, 2002, Population structure and particle swarm performance, 1671
Li, 2016, Oscillation criteria for even-order neutral differential equations, Appl. Math. Lett., 61, 35, 10.1016/j.aml.2016.04.012
Li, 2015, Oscillation of second-order neutral differential equations”, Math. Nachrich., 288, 1150, 10.1002/mana.201300029
Zhang, 2014, An adaptive particle swarm optimization algorithm for reservoir operation optimization, Appl. Soft Comput., 18, 167, 10.1016/j.asoc.2014.01.034
Bin, 2014, Haplotype inference using a novel binary particle swarm optimization algorithm, Appl. Soft Comput., 21, 415, 10.1016/j.asoc.2014.03.034
Davoodi, 2013, A hybrid improved quantum-behaved particle swarm optimization-simplex method (IQPSOS) to solve power system load flow problems, Appl. Soft Comput., 21, 171, 10.1016/j.asoc.2014.03.004
Cervantes, 2009, AMPSO: a new particle swarm method for nearest neighborhood classification, IEEE Trans. Cybern., 39, 1082, 10.1109/TSMCB.2008.2011816
Wang, 2016, Improving neural-network classifiers using nearest neighbor partitioning, IEEE Trans. Neural Netw. Learning Syst.
Li, 2013, Fuzzy neural network technique for system state forecasting, IEEE Trans. Cybern., 43, 1484, 10.1109/TCYB.2013.2259229
Chen, 2013, Online modeling with tunable RBF network, IEEE Trans. Cybern., 43, 935, 10.1109/TSMCB.2012.2218804
Zhan, 2013, Multiple populations for multiple objectives: a coevolutionary technique for solving multiobjective optimization problems, IEEE Trans. Cybern., 43, 445, 10.1109/TSMCB.2012.2209115
Lu, 2013, Decision making and finite-time motion control for a group of robots, IEEE Trans. Cybern., 43, 738, 10.1109/TSMCB.2012.2215318
Wang, 2016, Distilling middle-age cement hydration kinetics from observed data using phased hybrid evolution, Soft Comput.
Liang, 2006, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Trans. Evol. Comput., 10, 281, 10.1109/TEVC.2005.857610
Leu, 2013, Particle swarm optimization with grey evolutionary analysis, Appl. Soft Comput., 13, 4047, 10.1016/j.asoc.2013.05.014
Lim, 2014, Teaching and peer-learning particle swarm optimization, Appl. Soft Comput., 18, 39, 10.1016/j.asoc.2014.01.009
Calazan, 2014, A hardware accelerator for particle swarm optimization, Appl. Soft Comput., 14, 347, 10.1016/j.asoc.2012.12.034
Zhan, 2009, Adaptive particle swarm optimization, IEEE Trans. Cybern., 39
Valdez, 2011, An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms, Appl. Soft Comput., 11, 2625, 10.1016/j.asoc.2010.10.010
Yao, 1999, Evolutionary programming made faster, IEEE Trans. Evol. Comput., 3, 82, 10.1109/4235.771163
Suganthan, 2005
Holland, 1975
Wang, 2014, Improving particle swarm optimization using multi-layer searching strategy, Inform. Sci., 274, 70, 10.1016/j.ins.2014.02.143
Box, 2005
Nolfi, 1994, Learning and evolution in neural networks, Adapt. Behav., 3, 5, 10.1177/105971239400300102