Particle swarm optimization using dynamic tournament topology

Applied Soft Computing - Tập 48 - Trang 584-596 - 2016
Lin Wang1,2, Bo Yang1, Jeff Orchard2
1Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China
2David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

Tài liệu tham khảo

Powell, 1964, An efficient method for finding the minimum of a function of several variables without calculating derivatives, Comput. J., 7, 155, 10.1093/comjnl/7.2.155 Kennedy, 1995, A new optimizer using particle swarm theory, 39 Randall, 2011, Differential evolution for a constrained combinatorial optimisation problem, Int. J. Metaheurist., 1, 279, 10.1504/IJMHEUR.2011.044302 David, 2013, Gravitational search algorithm-based design of fuzzy control systems with a reduced parametric sensitivity, Inform. Sci., 247, 154, 10.1016/j.ins.2013.05.035 Zhou, 2016, Fuzzy clustering with the entropy of attribute weights, Neurocomputing, 198, 125, 10.1016/j.neucom.2015.09.127 Savio, 2014, A novel enumeration strategy of maximal bicliques from 3-dimensional symmetric adjacency matrix, Int. J. Artif. Intell., 12, 42 Ciurana, 2009, Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel, Mater. Manuf. Process., 24, 358, 10.1080/10426910802679568 Eslami, 2011, Power system stabilizer design using hybrid multi-objective particle swarm optimization with chaos, J. Central South Univ. Technol., 18, 1579, 10.1007/s11771-011-0875-3 Hung, 2011, Adaptive Fuzzy-GARCH model applied to forecasting the volatility of stock markets using particle swarm optimization, Inform. Sci., 181, 4673, 10.1016/j.ins.2011.02.027 Lim, 2008, A SAR autofocus algorithm based on particle swarm optimization, Prog. Electromagn. Res. B, 1, 159, 10.2528/PIERB07102501 Nguyen, 2011, Real-time estimation of sensor node's position using particle swarm optimization with log-barrier constraint, IEEE Trans. Instrum. Meas., 60, 3619, 10.1109/TIM.2011.2135030 del Valle, 2008, Particle swarm optimization: basic concepts, variants and applications in power systems, IEEE Trans. Evol. Comput., 12, 171, 10.1109/TEVC.2007.896686 Zainud-Deen, 2008, Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques, Prog. Electromagn. Res. B, 3, 35, 10.2528/PIERB07112703 Liang, 2005, Dynamic multi-swarm particle swarm optimizer, 124 Mendes, 2004, The fully informed particle swarm: simpler, maybe better, IEEE Trans. Evol. Comput., 8, 204, 10.1109/TEVC.2004.826074 Kennedy, 2002, Population structure and particle swarm performance, 1671 Li, 2016, Oscillation criteria for even-order neutral differential equations, Appl. Math. Lett., 61, 35, 10.1016/j.aml.2016.04.012 Li, 2015, Oscillation of second-order neutral differential equations”, Math. Nachrich., 288, 1150, 10.1002/mana.201300029 Zhang, 2014, An adaptive particle swarm optimization algorithm for reservoir operation optimization, Appl. Soft Comput., 18, 167, 10.1016/j.asoc.2014.01.034 Bin, 2014, Haplotype inference using a novel binary particle swarm optimization algorithm, Appl. Soft Comput., 21, 415, 10.1016/j.asoc.2014.03.034 Davoodi, 2013, A hybrid improved quantum-behaved particle swarm optimization-simplex method (IQPSOS) to solve power system load flow problems, Appl. Soft Comput., 21, 171, 10.1016/j.asoc.2014.03.004 Cervantes, 2009, AMPSO: a new particle swarm method for nearest neighborhood classification, IEEE Trans. Cybern., 39, 1082, 10.1109/TSMCB.2008.2011816 Wang, 2016, Improving neural-network classifiers using nearest neighbor partitioning, IEEE Trans. Neural Netw. Learning Syst. Li, 2013, Fuzzy neural network technique for system state forecasting, IEEE Trans. Cybern., 43, 1484, 10.1109/TCYB.2013.2259229 Chen, 2013, Online modeling with tunable RBF network, IEEE Trans. Cybern., 43, 935, 10.1109/TSMCB.2012.2218804 Zhan, 2013, Multiple populations for multiple objectives: a coevolutionary technique for solving multiobjective optimization problems, IEEE Trans. Cybern., 43, 445, 10.1109/TSMCB.2012.2209115 Lu, 2013, Decision making and finite-time motion control for a group of robots, IEEE Trans. Cybern., 43, 738, 10.1109/TSMCB.2012.2215318 Wang, 2016, Distilling middle-age cement hydration kinetics from observed data using phased hybrid evolution, Soft Comput. Liang, 2006, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Trans. Evol. Comput., 10, 281, 10.1109/TEVC.2005.857610 Leu, 2013, Particle swarm optimization with grey evolutionary analysis, Appl. Soft Comput., 13, 4047, 10.1016/j.asoc.2013.05.014 Lim, 2014, Teaching and peer-learning particle swarm optimization, Appl. Soft Comput., 18, 39, 10.1016/j.asoc.2014.01.009 Calazan, 2014, A hardware accelerator for particle swarm optimization, Appl. Soft Comput., 14, 347, 10.1016/j.asoc.2012.12.034 Zhan, 2009, Adaptive particle swarm optimization, IEEE Trans. Cybern., 39 Valdez, 2011, An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms, Appl. Soft Comput., 11, 2625, 10.1016/j.asoc.2010.10.010 Yao, 1999, Evolutionary programming made faster, IEEE Trans. Evol. Comput., 3, 82, 10.1109/4235.771163 Suganthan, 2005 Holland, 1975 Wang, 2014, Improving particle swarm optimization using multi-layer searching strategy, Inform. Sci., 274, 70, 10.1016/j.ins.2014.02.143 Box, 2005 Nolfi, 1994, Learning and evolution in neural networks, Adapt. Behav., 3, 5, 10.1177/105971239400300102