Particle swarm optimization (PSO). A tutorial
Tóm tắt
Từ khóa
Tài liệu tham khảo
Eberhart, 2001
Beni, 1989, Swarm Intelligence, 425
Engelbrecht, 2005
Bonabeau, 1999
2008
Leardi, 2001, Genetic algorithms in chemometrics and chemistry: a review, J. Chemometr., 15, 559, 10.1002/cem.651
1995
Yang, 2014
Dorigo, 1992
Dorigo, 2004
Kennedy, 1995, Particle swarm optimization, vol.4, 1942
Meissner, 2006, Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training, BMC Bioinformatics, 7, 125, 10.1186/1471-2105-7-125
Mohammadi, 2014, Comparison of particle swarm optimization and backpropagation algorithms for training feedforward neural network, J. Math. Computer Sci., 12, 113, 10.22436/jmcs.012.02.03
Hadavandi, 2010, Developing a time series model based on particle swarm optimization for gold price forecasting, 337
Yang, 2011, Accelerated particle swarm optimization and support vector machine for business optimization and applications, 53
Schwaab, 2008, Nonlinear parameter estimation through particle swarm optimization, Chem. Eng. Sci., 63, 1542, 10.1016/j.ces.2007.11.024
Marini, 2011, Finding relevant clustering directions in high-dimensional data using particle swarm optimization, J. Chemometr., 25, 366, 10.1002/cem.1345
Sorol, 2010, Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice. A test field for variable selection methods, Chemometr. Intell. Lab. Syst., 102, 100, 10.1016/j.chemolab.2010.04.009
Parastar, 2013, Multivariate curve resolution-particle swarm optimization: a high-throughput approach to exploit pure information from multi-component hyphenated chromatographic signals, Anal. Chim. Acta, 772, 16, 10.1016/j.aca.2013.02.042
Beyramysoltan, 2013, Investigation of the equality constraint effect on the reduction of the rotational ambiguity in three-component system using a novel grid search method, Anal. Chim. Acta, 791, 25, 10.1016/j.aca.2013.06.043
Skvortsov, 2014, Estimation of rotation ambiguity in multivariate curve resolution with charged particle swarm optimization (cPSO-MCR), J. Chemometr., 28, 727, 10.1002/cem.2663
Fan, 2009, Process identification using a new component analysis model and particle swarm optimization, Chemometr. Intell. Lab. Syst., 99, 19, 10.1016/j.chemolab.2009.07.006
Krause, 2015, Online monitoring of bioprocesses via multivariate sensor prediction within swarm intelligence decision making, Chemometr. Intell. Lab. Syst., 145, 48, 10.1016/j.chemolab.2015.04.012
Shen, 2004, Modified particle swarm optimization algorithm for variable selection in MLR and PLS modeling: QSAR studies of antagonism of angiotensin II antagonists, Eur. J. Pharm. Sci., 22, 145, 10.1016/j.ejps.2004.03.002
Cernuda, 2013, Hybrid evolutionary particle swarm optimization and ant colony optimization for variable selection, vol. 3, 7
Luo, 2013, Adaptive configuration of radial basis function network by regression tree allied with hybrid particle swarm optimization algorithm, Chemometr. Intell. Lab. Syst., 124, 50, 10.1016/j.chemolab.2013.02.002
Li, 2014, Particle swarm optimization-based protocol for partial least-squares discriminant analysis: application to 1H nuclear magnetic resonance analysis of lung cancer metabonomics, Chemometr. Intell. Lab. Syst., 135, 192, 10.1016/j.chemolab.2014.04.014
Fletcher, 2000
Pearl, 1984
Edelkamp, 2011
Shi, 1998, Parameter selection in particle swarm optimization, 591
van den Bergh, 2001
Clerc, 2002, The particle swarm: explosion stability and convergence in a multi-dimensional complex space, IEEE Trans. Evolution. Comput., 6, 58, 10.1109/4235.985692
Engelbrecht, 2012, Particle swarm optimization: velocity initialization, 1
Ozcan, 1998, Analysis of a simple particle swarm optimization system, vol. 8, 253
Eberhart, 2000, Comparing inertia weights and constriction factors in particle swarm optimization, vol.1, 84
Shi, 1998, A modified particle swarm optimizer, vol.1, 69
Bansal, 2011, Inertia weight strategies in particle swarm optimization, 640
Eberhart, 2001, Tracking and optimizing dynamic systems with particle swarms, vol.1, 94
Xin, 2009, A particle swarm optimizer with multistage linearly-decreasing inertia weight, vol.1, 505
Arumugam, 2006, On the performance of the particle swarm optimization algorithm with various inertia weight variants for computing optimal control of a class of hybrid systems, Discrete Dyn. Nat. Soc., 2006, 79295, 10.1155/DDNS/2006/79295
Feng, 2007, Chaotic Inertia Weight in Particle Swarm Optimization, 475
Muñoz Zavala, 2013, A comparison study of PSO neighborhoods, 251
Kennedy, 1997, A discrete binary version of the particle swarm algorithm, vol. 5, 4104
Ackley, 1987
Bäck, 1996
Malmquist, 1994, Alignment of chromatographic profiles for principal component analysis: a prerequisite for fingerprinting methods, J. Chromatogr. A, 687, 71, 10.1016/0021-9673(94)00726-8
Kassidas, 1998, Synchronization of batch trajectories using dynamic time warping, AIChE J., 44, 864, 10.1002/aic.690440412
Vest Nielsen, 1998, Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping, J. Chromatogr. A, 805, 17, 10.1016/S0021-9673(98)00021-1
Johnson, 2003, High-speed peak matching algorithm for retention time alignment of gas chromatographic data for chemometric analysis, J. Chromatogr. A, 996, 141, 10.1016/S0021-9673(03)00616-2
Daszykowski, 2010, Automated alignment of one-dimensional chromatographic signals, J. Chromatogr. A, 1217, 6127, 10.1016/j.chroma.2010.08.008
Savorani, 2010, icoshift: a versatile tool for the rapid alignment of 1D NMR spectra, J. Magn. Reson., 202, 190, 10.1016/j.jmr.2009.11.012
Tomasi, 2011, icoshift: an effective tool for the alignment of chromatographic data, J. Chromatogr. A, 1218, 7832, 10.1016/j.chroma.2011.08.086
Walczak, 2005, Fuzzy warping of chromatograms, Chemometr. Intell. Lab. Syst., 77, 173, 10.1016/j.chemolab.2004.07.012
Daszykowski, 2007, Identifying potential biomarkers in LC–MS, J. Chemometr., 21, 292, 10.1002/cem.1066
Skov, 2008, Multiblock variance partitioning. a new approach for comparing variation in multiple data blocks, Anal. Chim. Acta, 615, 18, 10.1016/j.aca.2008.03.045
Croux, 1996, A fast algorithm for robust principal components based on projection pursuit, 211
Friedman, 1974, A projection pursuit algorithm for exploratory data analysis, IEEE Trans. Comp., C-23, 881, 10.1109/T-C.1974.224051
Maronna, 2006
Rousseouw, 1993, Alternatives to the median absolute deviation, J. Am. Stat. Assoc., 88, 1273, 10.1080/01621459.1993.10476408
Vardi, 2000, The multivariate L-1 median and associated data depth, Proc. Nat. Acad. Sci., 97, 1423, 10.1073/pnas.97.4.1423
Croux, 2007, Algorithms for projection-pursuit robust principal component analysis, Chemometr. Intell. Lab. Syst., 87, 218, 10.1016/j.chemolab.2007.01.004
Hawkins, 1984, Location of several outliers in multiple regression data using elemental sets, Technometrics, 26, 197, 10.1080/00401706.1984.10487956
Hubert, 2005, ROBPCA: a new approach to robust principal components analysis, Technometrics, 47, 64, 10.1198/004017004000000563
Martens, 1989
Leardi, 2003, Genetic algorithms-PLS as a tool for wavelength selection in spectral data sets, 169
Bellato, 2011, Use of near infrared reflectance and transmittance coupled to robust calibration for the evaluation of nutritional value in naked oats, J. Agric. Food Chem., 59, 4349, 10.1021/jf200087y