Partial regularity of weak solutions and life-span of smooth solutions to a biological network formulation model

Xiangsheng Xu1
1Department of Mathematics and Statistics, Mississippi State University, Mississippi State, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Albi, G., Artina, M., Fornasier, M., Markowich, P.: Biological transportation networks: modeling and simulation. Anal. Appl. (Singap.) 14, 185–206 (2016)

Albi, G., Burger, M., Haskovee, J., Markowich, P., Schlottbom, M.: Continuum modeling of biological network formulation. In: Bellomo, N., Degond, P., Tamdor, E. (eds.), Active Particles Vol. I—Theory, Models, Applications, Series: Modelling and Simulation in Science and Technology. Birkhauser-Springer, Boston (2017)

Benilan, P., Brezis, H., Crandall, M.C.: A semilinear equation in $$L^1({\mathbb{R}}^N)$$. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2, 523–555 (1975)

De Giorgi, E.: Congetture sulla continuitá delle soluzioni di equazioni lineari ellittiche autoaggiunte a coefficienti illimitati, Unpublished (1995)

DiBenedetto, E.: Degenerate Parabolic Equations. Springer, New York (1993)

Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

Galaktionov, V.A., Pohozaev, S.I.: Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators. Indiana Univ. Math. J. 51, 1321–1338 (2002)

Gianquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, Princeton (1983)

Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

Haskovec, J., Markowich, P., Perthame, B.: Mathematical analysis of a PDE system for biological network formulation. Commun. Partial Differ. Equ. 40, 918–956 (2015)

Haskovec, J., Markowich, P., Perthame, B., Schlottbom, M.: Notes on a PDE system for biological network formulation. Nonlinear Anal. 138, 127–155 (2016)

Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs. Clarendon Press, Oxford (1993)

Hu, D.: Optimization, adaptation, and initialization of biological transport networks. Workshop on multi scale problems from physics, biology, and material sciences, May 28–31, Shanghai (2014)

Hu, D., Cai, D.: Adaptation and optimization of biological transport networks. Phys. Rev. Lett. 111, 138701 (2013)

Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Hölder Soaces, Graduate Studies in Math., vol. 12. AMS, Providence(1991)

Ladyzenskaja, Q.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-linear Equations of Parabolic Type, Tran. Math. Monographs, vol. 23. AMS, Providence (1968)

Li, B.: On the blow-up criterion and global existence of a nonlinear PDE system in biological transport networks. Kinet. Relat. Models 12, 1131–1162 (2019)

Liu, J.-G., Xu, X.: Partial regularity of weak solutions to a PDE system with cubic nonlinearity. J. Differ. Equ. 264, 5489–5526 (2018)

Meyers, N.G.: An $$L^p$$ estimate for the gradient of solution of second order elliptic divergence equations. Ann. Scuola Norm. Pisa III(17), 189–206 (1963)

Moser, J.: A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13, 457–468 (1960)

Oden, J.T.: Qualitative Methods in Nonlinear Mechanics. Prentice-Hall Inc, New Jersey (1986)

Onninen, J., Zhong, X.: Continuity of solutions of linear, degenerate elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 6, 103–116 (2007)

Rodrigues, J. R.: Obstacle Problems in Mathematical Physics, North-Holland Math. Studies, vol. 134. North-Holland, Amsterdam (1987)

Xu, X.: Partial regularity of solutions to a class of degenerate systems. Trans. Am. Math. Soc. 349, 1973–1992 (1997)

Xu, X.: A local partial regularity theorem for weak solutions of degenerate elliptic equations and its application to the thermistor problem. Differ. Integr. Equ. 12, 83–100 (1999)

Xu, X.: Regularity theorems for a biological network formulation model in two space dimensions. Kinet. Relat. Models 11, 397–408 (2018)

Xu, X.: Global existence of strong solutions to a biological network formulation model in $$2+1$$ dimensions. Discrete Contin. Dyn. Syst. Ser. A. arXiv:1911.01970v2 [math.AP] (2019) (to appear)

Yuan, G.: Regularity of solutions of the thermistor problem. Appl. Anal. 53, 149–157 (1994)