Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Giảm một phần graphene oxide hướng tới việc chế tạo dễ dàng màng khử muối
Tóm tắt
Việc phát triển các màng thân thiện với môi trường và giá thành thấp cho ứng dụng làm sạch nước là một thách thức toàn cầu. Graphene oxide là một trong những vật liệu được nghiên cứu nhiều nhất và có thể điều chỉnh cho việc chế tạo màng; tuy nhiên, việc điều chỉnh khoảng cách giữa các lớp để đạt hiệu suất khử muối hiệu quả vẫn chưa hoàn toàn được thực hiện. Ở đây, graphene oxide đã được giảm bằng axit ascorbic trong khoảng thời gian từ 5 đến 180 phút. Graphene oxide giảm một phần được sử dụng thông qua lọc chân không để chuẩn bị màng. Các mẫu giảm trong khoảng 5-20 phút có thể tạo thành các màng nguyên vẹn, cho thấy lưu lượng nước xuất sắc (58–178 L m−2 h−1 bar−1) và giảm đáng kể tính thấm NaCl. Ngoài ra, các graphene oxide giảm một phần cũng cho thấy khoảng cách giữa các lớp kép liên quan đến các miền gần như graphit và các miền giảm một phần gồm các nhóm chức chứa oxy. Bằng cách điều tra cơ chế dòng nước và thẩm thấu ion, các miền ôxi hóa còn lại và các loại nhóm chức chính được tìm thấy là có tác dụng điều chỉnh tương ứng. Nghiên cứu này cho thấy rằng quá trình giảm một phần có thể được khai thác một cách thuận lợi để chế tạo các màng dựa trên graphene oxide với khoảng cách giữa các lớp có thể điều chỉnh, có khả năng ngăn chặn muối.
Từ khóa
#graphene oxide #màng khử muối #môi trường #thẩm thấu #giảm một phầnTài liệu tham khảo
Amy G, Ghaffour N, Li Z, Francis L, Linares RV, Missimer T, Lattemann S (2017) Membrane-based seawater desalination: present and future prospects. Desalination 401:16–21. https://doi.org/10.1016/j.desal.2016.10.002
Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2:581–587. https://doi.org/10.1038/nchem.686
Cançado LG, Jorio A, Ferreira EHM, Stavale F, Achete CA, Capaz RB, Moutinho MVO, Lombardo A, Kulmala TS, Ferrari AC (2011) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett 11:3190–3196. https://doi.org/10.1021/nl201432g
Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D, Qian Z, Xu G, Liu G, Zeng J, Zhang L, Yang Y, Zhou G, Wu M, Jin W, Li J, Fang H (2017) Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550:380–383. https://doi.org/10.1038/nature24044
Cote LJ, Kim J, Tung VC, Luo J, Kim F, Huang J (2010) Graphene oxide as surfactant sheets. Pure Appl Chem 83:95–110. https://doi.org/10.1351/PAC-CON-10-10-25
De Silva KKH, Huang H-H, Yoshimura M (2018) Progress of reduction of graphene oxide by ascorbic acid. Appl Surf Sci 447:338–346. https://doi.org/10.1016/j.apsusc.2018.03.243
Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460. https://doi.org/10.1038/nature06016
Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240. https://doi.org/10.1039/B917103G
Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A (2010) Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater 22:4467–4472. https://doi.org/10.1002/adma.201000732
Fathizadeh M, Xu WL, Zhou F, Yoon Y, Yu M (2017) Graphene oxide: a novel 2-dimensional material in membrane separation for water purification. Adv Mater Interfaces 4:1600918. https://doi.org/10.1002/admi.201600918
Fathy M, Gomaa A, Taher FA, El-Fass MM, Kashyout AE-HB (2016) Optimizing the preparation parameters of GO and rGO for large-scale production. J Mater Sci 51:5664–5675. https://doi.org/10.1007/s10853-016-9869-8
Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114:6426–6432. https://doi.org/10.1021/jp100603h
Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246. https://doi.org/10.1038/nnano.2013.46
Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107. https://doi.org/10.1103/PhysRevB.61.14095
Foller T, Daiyan R, Jin X, Leverett J, Kim H, Webster R, Yap JE, Wen X, Rawal A, De Silva KKH, Yoshimura M, Bustamante H, Chang SLY, Kumar P, You Y, Lee GH, Amal R, Joshi R (2021) Enhanced graphitic domains of unreduced graphene oxide and the interplay of hydration behaviour and catalytic activity. Mater Today. https://doi.org/10.1016/j.mattod.2021.08.003
Fontananova E, Tocci E, Abu-Zurayk R, Grosso V, Meringolo C, Muzzi C, Al Bawab A, Qtaishat MR, De Filpo G, Curcio E, Drioli E, Di Profio G (2022) An environmental-friendly electrostatically driven method for preparing graphene oxide composite membranes with amazing stability in aqueous solutions. J Membr Sci 655:120587. https://doi.org/10.1016/j.memsci.2022.120587
Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X (2010a) Environment-friendly method to produce graphene that employs vitamin c and amino Acid. Chem Mater 22:2213–2218. https://doi.org/10.1021/cm902635j
Gao X, Jang J, Nagase S (2010b) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114:832–842. https://doi.org/10.1021/jp909284g
Goh PS, Ismail AF (2018) A review on inorganic membranes for desalination and wastewater treatment. Desalination 434:60–80. https://doi.org/10.1016/j.desal.2017.07.023
Gómez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7:3499–3503. https://doi.org/10.1021/nl072090c
Hontoria-Lucas C, López-Peinado AJ, López-González JDD, Rojas-Cervantes ML, Martín-Aranda RM (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33:1585–1592. https://doi.org/10.1016/0008-6223(95)00120-3
Hu M, Mi B (2013) Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol 47:3715–3723. https://doi.org/10.1021/es400571g
Huang H, Ying Y, Peng X (2014) Graphene oxide nanosheet: an emerging star material for novel separation membranes. J Mater Chem A 2:13772–13782. https://doi.org/10.1039/C4TA02359E
Huang H-H, Joshi RK, De Silva KKH, Badam R, Yoshimura M (2019) Fabrication of reduced graphene oxide membranes for water desalination. J Membr Sci 572:12–19. https://doi.org/10.1016/j.memsci.2018.10.085
Jain H, Verma AK, Dhupper R, Wadhwa S, Garg MC (2022) Development of CA-TiO2-incorporated thin-film nanocomposite forward osmosis membrane for enhanced water flux and salt rejection. Int J Environ Sci Technol 19:5387–5400. https://doi.org/10.1007/s13762-021-03415-x
Jia Z, Wang Y, Shi W, Wang J (2016) Diamines cross-linked graphene oxide free-standing membranes for ion dialysis separation. J Membr Sci 520:139–144. https://doi.org/10.1016/j.memsci.2016.07.042
Johra FT, Lee J-W, Jung W-G (2014) Facile and safe graphene preparation on solution based platform. J Ind Eng Chem 20:2883–2887. https://doi.org/10.1016/j.jiec.2013.11.022
Jones E, Qadir M, Van Vliet MTH, Smakhtin V, Kang S-M (2019) The state of desalination and brine production: a global outlook. Sci Total Environ 657:1343–1356. https://doi.org/10.1016/j.scitotenv.2018.12.076
Kamcev J, Freeman BD (2021) Nanofiltration membranes. In: Kobayashi S, Müllen K (eds) Encyclopedia of polymeric nanomaterials. Springer, Berlin, Heidelberg, pp 1–9
Lari S, SaM P, Akbari S, Emadzadeh D, Lau WJ (2022) Fabrication and evaluation of nanofiltration membrane coated with amino-functionalized graphene oxide for highly efficient heavy metal removal. Int J Environ Sci Technol 19:4615–4626. https://doi.org/10.1007/s13762-021-03464-2
Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482. https://doi.org/10.1021/jp9731821
Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105. https://doi.org/10.1038/nnano.2007.451
Li Y, Zhao W, Weyland M, Yuan S, Xia Y, Liu H, Jian M, Yang J, Easton CD, Selomulya C, Zhang X (2019) Thermally reduced nanoporous graphene oxide membrane for desalination. Environ Sci Technol 53:8314–8323. https://doi.org/10.1021/acs.est.9b01914
Liu H, Wang H, Zhang X (2015) Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification. Adv Mater 27:249–254. https://doi.org/10.1002/adma.201404054
Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. https://doi.org/10.1021/nn1006368
Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev AS, Alemany LB, Lu W, Tour JM (2018) Correction to improved synthesis of graphene oxide. ACS Nano 12:2078–2078. https://doi.org/10.1021/acsnano.8b00128
Mekonnen MM, Hoekstra AY (2016) Four billion people facing severe water scarcity. Sci Adv 2:e1500323. https://doi.org/10.1126/sciadv.1500323
Mi B (2014) Graphene oxide membranes for ionic and molecular sieving. Science 343:740–742. https://doi.org/10.1126/science.1250247
Mouhat F, Coudert F-X, Bocquet M-L (2020) Structure and chemistry of graphene oxide in liquid water from first principles. Nat Commun 11:1566. https://doi.org/10.1038/s41467-020-15381-y
Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK (2012) Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335:442–444. https://doi.org/10.1126/science.1211694
Padmavathy N, Behera SS, Pathan S, Das Ghosh L, Bose S (2019) Interlocked graphene oxide provides narrow channels for effective water desalination through forward osmosis. ACS Appl Mater Interfaces 11:7566–7575. https://doi.org/10.1021/acsami.8b20598
Park S, Lee K-S, Bozoklu G, Cai W, Nguyen ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578. https://doi.org/10.1021/nn700349a
Qiu R, Yuan S, Xiao J, Chen XD, Selomulya C, Zhang X, Woo MW (2019) Effects of edge functional groups on water transport in graphene oxide membranes. ACS Appl Mater Interfaces 11:8483–8491. https://doi.org/10.1021/acsami.9b00492
Qiu R, Xiao J, Chen XD, Selomulya C, Zhang X, Woo MW (2020) Relationship between desalination performance of graphene oxide membranes and edge functional groups. ACS Appl Mater Interfaces 12:4769–4776. https://doi.org/10.1021/acsami.9b19976
Rumsey SC, Levine M (1998) Absorption, transport, and disposition of ascorbic acid in humans. J Nutr Biochem 9:116–130. https://doi.org/10.1016/S0955-2863(98)00002-3
Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310. https://doi.org/10.1038/nature06599
Shen J, Hu Y, Li C, Qin C, Shi M, Ye M (2009) Layer-by-layer self-assembly of graphene nanoplatelets. Langmuir 25:6122–6128. https://doi.org/10.1021/la900126g
Smith BC (2018) Infrared spectral interpretation: a systematic approach. CRC Press, Boca Raton
Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034
Sun P, Zhu M, Wang K, Zhong M, Wei J, Wu D, Xu Z, Zhu H (2013) Selective ion penetration of graphene oxide membranes. ACS Nano 7:428–437. https://doi.org/10.1021/nn304471w
Szabó T, Berkesi O, Dékány I (2005) DRIFT study of deuterium-exchanged graphite oxide. Carbon 43:3186–3189. https://doi.org/10.1016/j.carbon.2005.07.013
Taniselass S, Md Arshad MK, Gopinath SCB (2019) Current state of green reduction strategies: Solution-processed reduced graphene oxide for healthcare biodetection. Mater Sci Eng C 96:904–914. https://doi.org/10.1016/j.msec.2018.11.062
Thakur S, Karak N (2015) Alternative methods and nature-based reagents for the reduction of graphene oxide: a review. Carbon 94:224–242. https://doi.org/10.1016/j.carbon.2015.06.030
Thebo KH, Qian X, Zhang Q, Chen L, Cheng H-M, Ren W (2018) Highly stable graphene-oxide-based membranes with superior permeability. Nat Commun 9:1486. https://doi.org/10.1038/s41467-018-03919-0
Wang Q, Aubry C, Chen Y, Song H, Zou L (2017) Insights on tuning the nanostructure of rGO laminate membranes for low pressure osmosis process. ACS Appl Mater Interfaces 9:22509–22517. https://doi.org/10.1021/acsami.7b04803
Wang S, Liang S, Chen L, Fang H (2022) Realizing ultrahigh nanofiltration performance based on small flake reduced graphene oxide membranes. Desalination 528:115601. https://doi.org/10.1016/j.desal.2022.115601
Werber JR, Deshmukh A, Elimelech M (2016a) The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ Sci Technol Lett 3:112–120. https://doi.org/10.1021/acs.estlett.6b00050
Werber JR, Osuji CO, Elimelech M (2016b) Materials for next-generation desalination and water purification membranes. Nat Rev Mater 1:16018. https://doi.org/10.1038/natrevmats.2016.18
Yang E, Ham M-H, Park HB, Kim C-M, Song J-H, Kim IS (2018) Tunable semi-permeability of graphene-based membranes by adjusting reduction degree of laminar graphene oxide layer. J Membr Sci 547:73–79. https://doi.org/10.1016/j.memsci.2017.10.039
Yeh C-N, Raidongia K, Shao J, Yang Q-H, Huang J (2015) On the origin of the stability of graphene oxide membranes in water. Nat Chem 7:166–170. https://doi.org/10.1038/nchem.2145
Yu H, He Y, Xiao G, Fan Y, Ma J, Gao Y, Hou R, Yin X, Wang Y, Mei X (2020) The roles of oxygen-containing functional groups in modulating water purification performance of graphene oxide-based membrane. Chem Eng J 389:124375. https://doi.org/10.1016/j.cej.2020.124375
Zhang Q, Qian X, Thebo KH, Cheng H-M, Ren W (2018) Controlling reduction degree of graphene oxide membranes for improved water permeance. Sci Bull 63:788–794. https://doi.org/10.1016/j.scib.2018.05.015
Zheng S, Tu Q, Urban JJ, Li S, Mi B (2017) Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano 11:6440–6450. https://doi.org/10.1021/acsnano.7b02999
Zheng J, Wang R, Ye Q, Chen B, Zhu X (2022) Multilayered graphene oxide membrane with precisely controlled interlayer spacing for separation of molecules with very close molecular weights. J Membr Sci 657:120678. https://doi.org/10.1016/j.memsci.2022.120678