Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nhận diện lại người một phần bằng cách sử dụng mạng điều chỉnh tư thế với học tập mặt nạ
Tóm tắt
Nhận diện lại người một phần là một nhiệm vụ thách thức, trong đó chỉ có thể quan sát một phần của người đó. Việc so sánh trực tiếp một hình ảnh một phần với hình ảnh toàn diện dẫn đến sự không phù hợp nghiêm trọng, làm giảm hiệu suất của các thuật toán nhận diện lại. Trong bài báo này, chúng tôi đề xuất một mạng điều chỉnh tư thế và học tập mặt nạ (PMN) để giải quyết các vấn đề về sự thiếu hụt lớn các phần và sự không phù hợp đáng kể của người đi bộ. Mô hình được đề xuất bao gồm một mô-đun biến hình không gian theo tư thế (PST) và một bộ trích xuất đặc trưng có mặt nạ. Mô-đun PST lấy mẫu một hình ảnh được biến đổi afine từ hình ảnh toàn diện/ một phần để căn chỉnh hình ảnh người đi bộ với tư thế chuẩn. Bộ trích xuất đặc trưng có mặt nạ, bao gồm một mạng lưới nền tảng và một nhánh học tập mặt nạ (MLB), được thiết kế để học tính khả thi của các phần cơ thể nhằm chọn lọc các đặc trưng hiệu quả. Các kết quả thực nghiệm trên hai bộ điểm chuẩn nhận diện người một phần được báo cáo cho thấy phương pháp được đề xuất đạt hiệu suất cạnh tranh so với các phương pháp tiên tiến nhất.
Từ khóa
#nhận diện lại người #điều chỉnh tư thế #học tập mặt nạ #mạng điều chỉnh tư thếTài liệu tham khảo
Li W, Zhao R, Xiao T, Wang X (2014) Deepreid: Deep filter pairing neural network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 152–159
Ahmed E, Jones M, Marks TK (2015) An improved deep learning architecture for person re-identification. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Zhao H, Tian M, Sun S, Shao J, Yan J, Yi S, Wang X, Tang X (2017) Spindle net: Person re-identification with human body region guided feature decomposition and fusion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1077–1085
Kalayeh MM, Basaran E, Gökmen M, Kamasak ME, Shah M (2018) Human semantic parsing for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1062–1071
Sun Y, Zheng L, Yang Y, Tian Q, Wang S (2018) Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline). In: Proceedings of the European Conference on Computer Vision (ECCV), pp 480–496
Jaderberg M, Simonyan K, Zisserman A et al (2015) Spatial transformer networks. In: Advances in neural information processing systems, pp 2017–2025
Li D, Chen X, Zhang Z, Huang K (2017) Learning deep context-aware features over body and latent parts for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 384–393
Zheng Z, Zheng L, Yang Y (2018) Pedestrian alignment network for large-scale person re-identification, IEEE Transactions on Circuits and Systems for Video Technology
Wei L, Zhang S, Yao H, Gao W, Tian Q (2017) Glad: Global-local-alignment descriptor for pedestrian retrieval. In: Proceedings of the 25th ACM international conference on Multimedia. ACM, pp 420–428
Su C, Li J, Zhang S, Xing J, Gao W, Tian Q (2017) Pose-driven deep convolutional model for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp 3960–3969
Zheng L, Huang Y, Lu H, Yang Y (2019) Pose invariant embedding for deep person re-identification, IEEE Transactions on Image Processing
Saquib Sarfraz M, Schumann A, Eberle A, Stiefelhagen R (2018) A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Wu J, Jiang J, Qi M, Liu H (2019) Independent metric learning with aligned multi-part features for video-based person re-identification. Multimedia Tools and Applications, pp 1–19
Cheng D, Gong Y, Zhou S, Wang J, Zheng N (2016) Person re-identification by multi-channel parts-based cnn with improved triplet loss function. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1335–1344
Tian, Y, Li, Q, Wang, D, Wan, B, Robust joint learning network: improved deep representation learning for person re-identification, Multimedia Tools and Applications, pp 1–17
Xiao J, Li H, Qu G, Fujita H, Cao Y, Zhu J, Huang C (2021) Hope: heatmap and offset for pose estimation. Journal of Ambient Intelligence and Humanized Computing, pp 1–13
Song C, Huang Y, Ouyang W, Wang L (2018) Mask-guided contrastive attention model for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1179–1188
Zhao L, Li X, Zhuang Y, Wang J (2017) Deeply-learned part-aligned representations for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp 3219–3228
Si J, Zhang H, Li C-G, Kuen J, Kong X, Kot AC, Wang G (2018) Dual attention matching network for context-aware feature sequence based person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 5363–5372
Liu J, Ni B, Yan Y, Zhou P, Cheng S, Hu J (2018) Pose transferrable person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 4099–4108
Ma L, Sun Q, Georgoulis S, Van Gool L, Schiele B, Fritz M (2018) Disentangled person image generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 99–108
Qian X, Fu Y, Xiang T, Wang W, Qiu J, Wu Y, Jiang Y-G, Xue X (2018) Pose-normalized image generation for person re-identification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 650–667
Ge Y, Li Z, Zhao H, Yin G, Yi S, Wang X (2018) Fd-gan: Pose-guided feature distilling gan for robust person re-identification. In: Advances in Neural Information Processing Systems, pp 1222–1233
Zheng W-S, Li X, Xiang T, Liao S, Lai J, Gong S (2015) Partial person re-identification. In: The IEEE International Conference on Computer Vision (ICCV)
He L, Liang J, Li H, Sun Z (2018) Deep spatial feature reconstruction for partial person re-identification: Alignment-free approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 7073–7082
He L., Sun Z., Zhu Y, Wang Y (2018) Recognizing partial biometric patterns,” arXiv preprint arXiv:1810.07399
Fan X, Luo H, Zhang X, He L, Zhang C, Jiang W (2018) Scpnet: Spatial-channel parallelism network for joint holistic and partial person re-identification. In: Asian Conference on Computer Vision. Springer, pp 19–34
Sun Y, Xu Q, Li Y, Zhang C, Li Y, Wang S, Sun J (2019) Perceive where to focus: Learning visibility-aware part-level features for partial person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 393–402
Luo H, Jiang W, Fan X, Zhang C (2020) Stnreid: Deep convolutional networks with pairwise spatial transformer networks for partial person re-identification, IEEE Transactions on Multimedia
Gao S, Wang J, Lu H, Liu Z (2020) Pose-guided visible part matching for occluded person reid. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11744–11752
Fang H-S, Xie S, Tai Y-W, Lu C (2017) Rmpe: Regional multi-person pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp 2334–2343
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Xia BN, Gong Y, Zhang Y, Poellabauer C (2019) Second-order non-local attention networks for person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 3760–3769
Zheng L, Shen L, Tian L, Wang S, Wang J, Tian Q (2015) Scalable person re-identification: a benchmark. In: Proceedings of the IEEE international conference on computer vision, pp 1116–1124
Zheng W-S, Gong S, Xiang T (2011) Person re-identification by probabilistic relative distance comparison. In: CVPR 2011. IEEE, pp 649–656
Luo H, Gu Y, Liao X, Lai S, Jiang W (2019) Bag of tricks and a strong baseline for deep person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp 0–0
Zhou K, Yang Y, Cavallaro A, Xiang T (2019) Omni-scale feature learning for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp 3702–3712
Chang X, Hospedales TM, Xiang T (2018) Multi-level factorisation net for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2109–2118
Li W, Zhu X, Gong S (2018) Harmonious attention network for person re-identification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2285–2294
Suh Y, Wang J, Tang S, Mei T, Lee KM (2018) Part-aligned bilinear representations for person re-identification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 402–419
Zhuo J, Lai J, Chen P (2019) A novel teacher-student learning framework for occluded person re-identification. arXiv preprint arXiv:1907.03253
Miao J., Wu Y., Liu P., Ding Y., Yang Y. (2019) Pose-guided feature alignment for occluded person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp 542–551