Partial periodate oxidation and thermal cross-linking for the processing of thermoset all-cellulose composites

Composites Science and Technology - Tập 117 - Trang 54-61 - 2015
Amandine Codou1, Nathanaël Guigo1, Laurent Heux2, Nicolas Sbirrazzuoli1
1Université Nice Sophia Antipolis, CNRS, Laboratoire Physique de la Matière Condensée, UMR 7336, F-06100 Nice, France
2Université Grenoble Alpes, CERMAV, F-3800 Grenoble, CNRS, CERMAV, F-38000 Grenoble, France

Tài liệu tham khảo

Sakurada, 1967, Elastic moduli of the crystal lattices of polymers, J. Polym. Sci. Polym. Symp., 15, 75, 10.1002/polc.5070150107 Šturcová, 2005, Elastic modulus and stress-transfer properties of tunicate cellulose whiskers, Biomacromolecules, 6, 1055, 10.1021/bm049291k Saito, 2012, An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation, Biomacromolecules, 14, 248, 10.1021/bm301674e Glasser, 1999, Fiber-reinforced cellulosic thermoplastic composites, J. Appl. Polym. Sci., 73, 1329, 10.1002/(SICI)1097-4628(19990815)73:7<1329::AID-APP26>3.0.CO;2-Q Eichhorn, 2001, Review: Current international research into cellulosic fibres and composites, J. Mater. Sci., 36, 2107, 10.1023/A:1017512029696 Ganster, 2006, Novel cellulose fibre reinforced thermoplastic materials, Cellulose, 13, 271, 10.1007/s10570-005-9045-9 Miao, 2013, Cellulose reinforced polymer composites and nanocomposites: a critical review, Cellulose, 20, 2221, 10.1007/s10570-013-0007-3 Nishino, 2004, All-Cellulose Composite, Macromolecules, 37, 7683, 10.1021/ma049300h Huber, 2012, A critical review of all-cellulose composites, J. Mater. Sci., 47, 1171, 10.1007/s10853-011-5774-3 Gindl, 2005, All-cellulose nanocomposite, Polymer, 46, 10221, 10.1016/j.polymer.2005.08.040 Duchemin, 2009, Structure–property relationship of all-cellulose composites, Compos. Sci. Technol., 69, 1225, 10.1016/j.compscitech.2009.02.027 Gindl, 2006, Changes in the molecular orientation and tensile properties of uniaxially drawn cellulose films, Biomacromolecules, 7, 3146, 10.1021/bm060698u Yousefi, 2015, Direct solvent nanowelding of cellulose fibers to make all-cellulose nanocomposite, Cellulose, 22, 1189, 10.1007/s10570-015-0579-1 Lu, 2003, Self-reinforced melt processable composites of sisal, Compos. Sci. Technol., 63, 177, 10.1016/S0266-3538(02)00204-X Zhang, 2005, Fully biodegradable natural fiber composites from renewable resources: all-plant fiber composites, Compos. Sci. Technol., 65, 2514, 10.1016/j.compscitech.2005.06.018 Menezes, 2009, Self-reinforced composites obtained by the partial oxypropylation of cellulose fibers. 2. Effect of catalyst on the mechanical and dynamic mechanical properties, Cellulose, 16, 239, 10.1007/s10570-008-9271-z Gandini, 2005, Direct transformation of cellulose fibres into self-reinforced composites by partial oxypropylation, Polymer, 46, 10611, 10.1016/j.polymer.2005.09.004 Matsumura, 2000, Cellulosic nanocomposites. I. Thermally deformable cellulose hexanoates from heterogeneous reaction, J. Appl. Polym. Sci., 78, 2242, 10.1002/1097-4628(20001220)78:13<2242::AID-APP20>3.0.CO;2-5 Matsumura, 2000, Cellulosic nanocomposites. II. Studies by atomic force microscopy, J. Appl. Polym. Sci., 78, 2254, 10.1002/1097-4628(20001220)78:13<2254::AID-APP30>3.0.CO;2-# Battista OA, Fleck EG, Jr., Neumann EW. Oxidized derivatives of cellulose crystallite aggregates. 1963. US Patent 3,111,513. Hou, 2007, Characteristics of wood cellulose fibers treated with periodate and bisulfite, Ind. Eng. Chem. Res., 46, 7830, 10.1021/ie0704750 Larsson, 2008, The influence of periodate oxidation on the moisture sorptivity and dimensional stability of paper, Cellulose, 15, 837, 10.1007/s10570-008-9243-3 Zeronian, 1964, The mechanical properties of paper made from periodate oxycellulose pulp and from the same pulp after reduction with borohydride, Tappi, 47, 557 Larsson, 2014, Highly ductile fibres and sheets by core-shell structuring of the cellulose nanofibrils, Cellulose, 21, 323, 10.1007/s10570-013-0099-9 Larsson, 2014, Ductile all-cellulose nanocomposite films fabricated from core–shell structured cellulose nanofibrils, Biomacromolecules, 15, 2218, 10.1021/bm500360c Guigo, 2014, Surface modification of cellulose microfibrils by periodate oxidation and subsequent reductive amination with benzylamine: a topochemical study, Cellulose, 21, 4119, 10.1007/s10570-014-0459-0 Zhang, 2003, Physical properties and compact analysis of commonly used direct compression binders, AAPS Pharm. Sci. Tech., 4, 489, 10.1208/pt040462 Elazzouzi-Hafraoui, 2008, The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose, Biomacromolecules, 9, 57, 10.1021/bm700769p Zhao, 1991, Determination of degree of substitution of formyl groups in polyaldehyde dextran by the hydroxylamine hydrochloride method, Pharm. Res., 8, 400, 10.1023/A:1015866104055 Kim, 2000, Periodate oxidation of crystalline cellulose, Biomacromolecules, 1, 488, 10.1021/bm0000337 Kim, 2001, Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives, Thermochim. Acta, 369, 79, 10.1016/S0040-6031(00)00734-6 Kim, 2004, Solubilization of dialdehyde cellulose by hot water, Carbohyd. Polym., 56, 7, 10.1016/j.carbpol.2003.10.013 Atalla, 1980, Carbon-13 NMR spectra of cellulose polymorphs, J. Am. Chem. Soc., 102, 3249, 10.1021/ja00529a063 Earl, 1980, High resolution, magic angle sampling spinning carbon-13 NMR of solid cellulose I, J. Am. Chem. Soc., 102, 3251, 10.1021/ja00529a064 Nordin, 1973, Molten cellulose produced in a laser beam, Sven. Papperstidn, 76, 609 Mosca Conte, 2012, Role of cellulose oxidation in the yellowing of ancient paper, Phys. Rev. Let., 108, 158301, 10.1103/PhysRevLett.108.158301 Lewin, 1997, Oxidation and aging of cellulose, Macromol. Symp., 118, 715, 10.1002/masy.19971180192 Pintiaux, 2015, Binderless materials obtained by thermo-compressive processing of lignocellulosic fibers: a comprehensive review, BioResources, 10, 1915, 10.15376/biores.10.1.1915-1963 Pintiaux, 2013, High pressure compression-molding of α-cellulose and effects of operating conditions, Materials, 6, 2240, 10.3390/ma6062240 Huber, 2013, Flexural and impact properties of all-cellulose composite laminates, Compos. Sci. Technol., 88, 92, 10.1016/j.compscitech.2013.08.040 Deng, 1999, Influence of fibre cross-sectional aspect ratio on mechanical properties of glass fibre/epoxy composites I. Tensile and flexure behaviour, Compos. Sci. Technol., 59, 1331, 10.1016/S0266-3538(98)00168-7 Nishino, 2007, All-cellulose composite prepared by selective dissolving of fiber surface, Biomacromolecules, 8, 2712, 10.1021/bm0703416 Shafizadeh, 1979, Thermal degradation of cellulose in air and nitrogen at low temperatures, J. Appl. Polym. Sci., 23, 1431, 10.1002/app.1979.070230513 Aggarwal, 1997, The combustion of starch, cellulose and cationically modified products of these compounds investigated using thermal analysis, Thermochim. Acta, 291, 65, 10.1016/S0040-6031(96)03103-6 Varma, 1995, Thermal properties of oxidized cellulose, Cellulose, 2, 41 Demirbas, 1999, Mechanisms of liquefaction and pyrolysis reactions of biomass, Energy Convers. Manag., 41, 633, 10.1016/S0196-8904(99)00130-2