Partial and Recombined Estimators for Nonlinear Additive Models
Tóm tắt
Starting from a variant of an estimator using marginal integration, this paper proposes partial and recombined estimators for nonlinear additive regression models. Partial estimators are used for data analysis purposes and recombined estimators are used to improve the estimation and prediction performances for small to moderate sample sizes. In the first part of the paper, some simulations illustrate step-by-step the principle and the value of the proposed estimators, which are finally applied to the analysis and prediction of ozone concentration in Paris area. In the second part of the paper, almost sure convergence results as well as a multivariate central limit theorem and a test for partial additivity are provided.
Tài liệu tham khảo
Amato, U. and Antoniadis, A.: Adaptive wavelet series estimation in separable nonparametric regression models, Statistics and Computing (2001) (to appear).
Ango Nze, P. and Portier, B.: Estimation of the density and the regression functions of an absolutely regular stationary process, Pub. Ins. Stat. Univ. Paris 38(2) (1994), 59–87.
Auestad, B. and Tjøstheim, D.: Nonparametric identification of nonlinear time series: projections, J. Am. Stat. Assoc. 89 (1994), 1398–1409.
Barry, D.: Testing for additivity of a regression function, Ann. of Stat. 21 (1993), 235–254.
Bel, L., Bellanger, L., Bonneau, V., Ciuperca, G., Dacunha-Castelle, D., Deniau, C., Ghattas, B., Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.-M. and Tomassone, R.: Eléments de comparaison de prévisions statistiques des pics d'ozone, Revue de Stat. Appl. XLVII(3) (1999a), 7–25.
Bel, L., Bonneau, V., Chèze, N., Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.-M. and Portier, B.: Etudes de pollution: modèles de prévision à 3 échéances pour le dioxyde d'azote et l'ozone, Technical Report for Airparif, 215 p., July 1999b.
Bel, L., Oppenheim, G., Poggi, J.-M., Portier, B. and Vautard, R.: Statistical forecasting of ozone peaks over Paris area with a nonlinear additive model. Impact of imported ozone, Proc. 10th Int. Symp. Applied Stoch. Models Data Analysis, June 12-15, 2001, Compiègne, pp. 166–171.
Bosq, D.: Nonparametric Statistics for Stochastic Processes, Estimation and Prediction, Lecture Notes in Statistics, 110, Springer Verlag, New York, 1996.
Breiman, L. and Friedman, J. H.: Estimating optimal transformations for multiple regression and correlation, J. Am. Stat. Assoc. 80 (1985), 580–619.
Buja, A., Hastie, T. J. and Tibshirani, R. J.: Linear smoothers and additive models, Ann. of Stat. 17 (1989), 453–510.
Cai, Z. and Masry, E.: Nonparametric estimation of additive nonlinear ARX time series: local linear fitting and projections, Preprint (1997), 1–30.
Camlong, C.: Convergence presque sûre de l'estimateur à noyau d'une fonction de régression additive sous une hypothèse de mèlange, C. R Acad. Sci. Paris, t 329, Ser. I (1999), 75–78.
Camlong-Viot, C.: Vers un test d'additivité en régression non-paramétrique sous des conditions de mélange, C. R Acad. Sci. Paris, t 333, Ser. I (2001), 877–880.
Camlong-Viot, C., Sarda, P. and Vieu, P.: Additive time series: the kernel integration method, Math. Meth. Stat. 9 (2000), 358–375.
Chen, R., Lui, J. S. and Tsay, R. S.: Additivity tests for nonlinear autoregression, Biometrika 82 (1995), 369–383.
Collomb, G.: Propriétés de convergence presque complète du prédicteur à noyau, Zeit. Wahrsch. verw. Gebiete 66 (1984), 441–460.
Davydov, Y. A.: The invariance principle for stationary processes, Theo. Prob. Appl. 15 (1970), 487–498.
Doukhan, P.: Mixing. Properties and Examples, Lecture Notes in Statistics 72, Springer Verlag, New York, 1994.
Eubank, R. L., Hart, J. D., Simpson, D. G. and Stefanski, L. A.: Testing for additivity in nonparametric regression, Ann. of Stat. 23(6) (1995), 1896–1920.
Fan, J., Härdle, W. and Mammen, E.: Direct estimation of low-dimensional components in additive models, Ann. of Stat. 26(3) (1998), 943–971.
Hall, P. and Heyde, C. C.: Martingale Limit Theory and Its Applications, Academic Press, New York, 1981.
Härdle, W. and Hall, P.: On the backfitting algorithm for additive regression models, Statistica Neerlandica 47 (1993), 43–57.
Hastie, T. and Tibshirani, R.: Generalized Additive Models, Chapman & Hall, London, 1990.
Liebscher, E.: Strong convergence of sums of ?-mixing random variables with applications to density estimation, Stoch. Proc. Appl. 65 (1996), 69–80.
Linton, O. B.: Efficient estimation of additive nonparametric regression models, Biometrika 84 (1997), 469–473.
Linton, O. B. and Härdle,W.: Estimation of additive regression models with known links, Biometrika 83 (1996), 529–540.
Linton, O. B. and Nielsen, J. P.: A kernel method of estimating structured nonparametric regression based on marginal integration, Biometrika 82 (1995), 93–100.
Mammen, E., Linton, O. B. and Nielsen, J. P.: The existence and asymptotic properties of a backfitting projection algorithm under weak conditions, Ann. of Stat. 27 (1999), 1443–1490.
Masry, E. and Tjøstheim, D.: Additive nonlinear ARX time series and projection estimates, Econometric theory 13 (1997), 214–252.
Newey, W. K.: Kernel estimation of partial means, Econometric Theory 10 (1994), 233–253.
Nielsen, J. P. and Linton, O. B.: An optimization interpretation of integration and back-fitting estimators for separable nonparametric models, J. R. Statist. Soc. B 60 (1998), 217–222.
Opsomer, J. D. and Ruppert, D.: On the existence and asymptotic properties of back-fitting estimators, Ann. of Stat. 25 (1997), 186–211.
Rio, E.: The functional law of the iterated logarithm for stationary strongly mixing sequences, Ann. of Prob. 23 (1996), 1188–1203.
Sperlich, S., Linton, O. B. and Härdle, W.: Integration and backfitting methods in additive models-finite sample properties and comparison, Test. 8 (1999), 419–458.
Stone, C. J.: Additive regresssion and other nonparametric models, Ann. of Stat. 13 (1985), 698–705.
Stone, C. J.: The dimensionality reduction principle for generalized additive models, Ann. of Stat. 14 (1986), 592–606.
Venables, W. N. and Ripley, B.: Modern Applied Statistics with S-Plus, Springer Verlag, New-York, 1994.
Wilks, D. R.: Statistical Methods in the Atmospheric Sciences: An Introduction, Academic Press, New York, 1995.