Partial Theta Function and Separation in Modulus Property of its Zeros

Vietnam Journal of Mathematics - Tập 48 - Trang 145-157 - 2020
Vladimir Petrov Kostov1
1Université Côte d’Azur, CNRS, LJAD, Nice, France

Tóm tắt

We consider the partial theta function $\theta (q,z):={\sum }_{j=0}^{\infty }q^{j(j+1)/2}z^{j}$, where $z\in \mathbb {C}$ is a variable and $q\in \mathbb {C}$, 0 < |q| < 1, is a parameter. Set $D(a):=\{q\in \mathbb {C}, 0<|q|\leq a,$$\arg (q)\in [\pi /2,3\pi /2]\}$. We show that for $k\in \mathbb {N}$ and q ∈ D(0.55), there exists exactly one zero of θ(q,⋅) (which is a simple one) in the open annulus |q|−k+ 1/2 < z < |q|−k− 1/2 (if k ≥ 2) or in the punctured disk 0 < z < |q|− 3/2 (if k = 1). For k ≠ 2, 3, this holds true for q ∈ D(0.6) as well.

Tài liệu tham khảo

Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook Part II. Springer-Verlag, New York (2009) Berndt, B.C., Kim, B.: Asymptotic expansions of certain partial theta functions. Proc. Am. Math. Soc. 139, 3779–3788 (2011) Bringmann, K., Folsom, A., Milas, A.: Asymptotic behavior of partial and false theta functions arising from Jacobi forms and regularized characters. J. Math. Phys. 58, 011702 (2017). 19 pages Bringmann, K., Folsom, A., Rhoades, R.C.: Partial theta functions and mock modular forms as q-hypergeometric series. Ramanujan J. 29, 295–310 (2012) Creutzig, T., Milas, A., Wood, S.: On regularised quantum dimensions of the singlet vertex operator algebra and false theta functions. Int. Math. Res. Not. 2017, 1390–1432 (2017) Hardy, G.H.: On the zeros of a class of integral functions. Messenger Math. 34, 97–101 (1904) Hutchinson, J.I.: On a remarkable class of entire functions. Trans. Am. Math. Soc. 25, 325–332 (1923) Katkova, O.M., Lobova, T., Vishnyakova, A.M.: On power series having sections with only real zeros. Comput. Methods Funct. Theory 3, 425–441 (2003) Kostov, V.P.: On the zeros of a partial theta function. Bull. Sci. Math. 137, 1018–1030 (2013) Kostov, V.P.: Asymptotics of the spectrum of partial theta function. Rev. Mat. Complut. 27, 677–684 (2014) Kostov, V.P.: On the spectrum of a partial theta function. Proc. R. Soc. Edinb. A 144, 925–933 (2014) Kostov, V.P.: A property of a partial theta function. C. R. Acad. Sci. Bulg. 67, 1319–1326 (2014) Kostov, V.P.: On multiple zeros of a partial theta function. Funct. Anal. Appl. 50, 153–156 (2016) Kostov, V.P.: On a partial theta function and its spectrum. Proc. R. Soc. Edinb. A 146, 609–623 (2016) Kostov, V.P.: A separation in modulus property of the zeros of a partial theta function. Anal. Math. 44, 501–519 (2018) Kostov, V.P.: The closest to 0 spectral number of the partial theta function. Comptes Rendus Acad. Sci. Bulg. 69, 1105–1112 (2016) Kostov, V.P., Shapiro, B.: Hardy–Petrovitch–Hutchinson’s problem and partial theta function. Duke Math. J. 162, 825–861 (2013) Ostrovskii, I.V.: On zero distribution of sections and tails of power series. In: Lyubich, Y. et al. (eds.) Entire Functions in Modern Analysis: Boris Levin Memorial Conference. Israel Mathematics Conference Proceedings, vol. 15, pp 297–310. American Mathematical Society (2001) Petrovitch, M.: Une classe remarquable de séries entières. Atti del IV Congresso Internationale dei Matematici Rome (Ser. 1) 2, 36–43 (1908) Sokal, A.D.: The leading root of the partial theta function. Adv. Math. 229, 2603–2621 (2012) Warnaar, S.O.: Partial theta functions. I. Beyond the lost notebook. Proc. Lond. Math. Soc. 87, 363–395 (2003)