Tín hiệu ubiquitin do parkin trung gian trong sự hình thành aggresome và autophagy

Biochemical Society Transactions - Tập 38 Số 1 - Trang 144-149 - 2010
Lih‐Shen Chin1, James A. Olzmann1, Lian Li1
1Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, U.S.A.

Tóm tắt

Việc hiểu cách các tế bào xử lý và loại bỏ protein gấp nếp sai là vô cùng quan trọng vì sự gấp nếp sai và tích tụ protein dẫn đến bệnh sinh của nhiều rối loạn thoái hóa thần kinh, bao gồm bệnh PD (bệnh Parkinson) và bệnh Alzheimer. Ngoài hệ thống ubiquitin-proteasome, con đường aggresome-autophagy đã nổi lên như một hệ thống phòng thủ tế bào quan trọng khác chống lại sự tích tụ độc hại của protein gấp nếp sai. Khác với autophagy cơ bản, tiến hành việc thanh thải không chọn lọc, ồ ạt các protein gấp nếp sai cùng với các protein và bào quan tế bào bình thường, con đường aggresome-autophagy ngày càng được công nhận như một loại autophagy đặc biệt có điều kiện, tiến hành thanh thải chọn lọc các protein gấp nếp và tích tụ dưới điều kiện căng thẳng proteotoxic. Bằng chứng gần đây đã liên quan đến E3 ligase parkin liên quan đến bệnh PD như một điều tiết chính của con đường aggresome-autophagy và chỉ ra vai trò tín hiệu của polyubiquitination liên kết Lys63 trong việc điều chỉnh sự hình thành aggresome và autophagy. Bài viết tổng quan hiện tại tóm tắt kiến thức về con đường aggresome-autophagy, sự điều chỉnh của polyubiquitination liên kết Lys63 qua parkin, và sự rối loạn của nó trong các bệnh thoái hóa thần kinh.

Từ khóa


Tài liệu tham khảo

Gregersen, 2006, Protein misfolding disorders: pathogenesis and intervention, J. Inherit. Metab. Dis., 29, 456, 10.1007/s10545-006-0301-4

Whatley, 2008, The ubiquitin–proteasome system in spongiform degenerative disorders, Biochim. Biophys. Acta, 1782, 700, 10.1016/j.bbadis.2008.08.006

Olzmann, 2008, Aggresome formation and neurodegenerative diseases: therapeutic implications, Curr. Med. Chem., 15, 47, 10.2174/092986708783330692

Kopito, 2000, Aggresomes, inclusion bodies and protein aggregation, Trends Cell Biol., 10, 524, 10.1016/S0962-8924(00)01852-3

Xie, 2007, Autophagosome formation: core machinery and adaptations, Nat. Cell Biol., 9, 1102, 10.1038/ncb1007-1102

Levine, 2008, Autophagy in the pathogenesis of disease, Cell, 132, 27, 10.1016/j.cell.2007.12.018

Iwata, 2005, Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation, Proc. Natl. Acad. Sci. U.S.A., 102, 13135, 10.1073/pnas.0505801102

Ravikumar, 2002, Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy, Hum. Mol. Genet., 11, 1107, 10.1093/hmg/11.9.1107

Ravikumar, 2004, Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease, Nat. Genet., 36, 585, 10.1038/ng1362

Iwata, 2005, HDAC6 and microtubules are required for autophagic degradation of aggregated Huntingtin, J. Biol. Chem., 280, 40282, 10.1074/jbc.M508786200

Shibata, 2006, Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1, J. Biol. Chem., 281, 14474, 10.1074/jbc.M600364200

Kitada, 1998, Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism, Nature, 392, 605, 10.1038/33416

Hattori, 2004, Pathogenetic mechanisms of parkin in Parkinson's disease, Lancet, 364, 722, 10.1016/S0140-6736(04)16901-8

Moore, 2006, Parkin: a multifaceted ubiquitin ligase, Biochem. Soc. Trans., 34, 749, 10.1042/BST0340749

Tan, 2007, Pathogenic mutations in Parkinson disease, Hum. Mutat., 28, 641, 10.1002/humu.20507

Goldberg, 2003, Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons, J. Biol. Chem., 278, 43628, 10.1074/jbc.M308947200

Fallon, 2006, A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K–Akt signalling, Nat. Cell Biol., 8, 834, 10.1038/ncb1441

Henn, 2007, Parkin mediates neuroprotection through activation of IκB kinase/nuclear factor-κB signaling, J. Neurosci., 27, 1868, 10.1523/JNEUROSCI.5537-06.2007

Clark, 2006, Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin, Nature, 441, 1162, 10.1038/nature04779

Narendra, 2008, Parkin is recruited selectively to impaired mitochondria and promotes their autophagy, J. Cell Biol., 183, 795, 10.1083/jcb.200809125

Olzmann, 2007, Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6, J. Cell Biol., 178, 1025, 10.1083/jcb.200611128

Bonifati, 2003, Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism, Science, 299, 256, 10.1126/science.1077209

Olzmann, 2004, Familial Parkinson's disease-associated L166P mutation disrupts DJ-1 protein folding and function, J. Biol. Chem., 279, 8506, 10.1074/jbc.M311017200

Huai, 2003, Crystal structure of DJ-1/RS and implication on familial Parkinson's disease, FEBS Lett., 549, 171, 10.1016/S0014-5793(03)00764-6

Kawaguchi, 2003, The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress, Cell, 115, 727, 10.1016/S0092-8674(03)00939-5

Olzmann, 2008, Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway, Autophagy, 4, 85, 10.4161/auto.5172

Tan, 2008, Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases, Hum. Mol. Genet., 17, 431, 10.1093/hmg/ddm320

Bjørkøy, 2005, p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on Huntingtin-induced cell death, J. Cell Biol., 171, 603, 10.1083/jcb.200507002

Pankiv, 2007, p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy, J. Biol. Chem., 282, 24131, 10.1074/jbc.M702824200

Seibenhener, 2004, Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation, Mol. Cell. Biol., 24, 8055, 10.1128/MCB.24.18.8055-8068.2004

Wooten, 2008, Essential role of sequestosome 1/p62 in regulating accumulation of Lys63-ubiquitinated proteins, J. Biol. Chem., 283, 6783, 10.1074/jbc.M709496200

Komatsu, 2007, Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice, Cell, 131, 1149, 10.1016/j.cell.2007.10.035

Rapoport, 1985, Proteolysis of mitochondria in reticulocytes during maturation is ubiquitin-dependent and is accompanied by a high rate of ATP hydrolysis, FEBS Lett., 180, 249, 10.1016/0014-5793(85)81080-2

Sutovsky, 1999, Ubiquitin tag for sperm mitochondria, Nature, 402, 371, 10.1038/46466

Martinez-Vicente, 2007, Autophagy and neurodegeneration: when the cleaning crew goes on strike, Lancet Neurol., 6, 352, 10.1016/S1474-4422(07)70076-5

Nixon, 2006, Autophagy in neurodegenerative disease: friend, foe or turncoat?, Trends Neurosci., 29, 528, 10.1016/j.tins.2006.07.003

Bennett, 2007, Global changes to the ubiquitin system in Huntington's disease, Nature, 448, 704, 10.1038/nature06022

Laurin, 2002, Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone, Am. J. Hum. Genet., 70, 1582, 10.1086/340731

Ramesh Babu, 2008, Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration, J. Neurochem., 106, 107, 10.1111/j.1471-4159.2008.05340.x

Johnston, 2002, Cytoplasmic dynein/dynactin mediates the assembly of aggresomes, Cell Motil. Cytoskeleton, 53, 26, 10.1002/cm.10057

Ravikumar, 2005, Dynein mutations impair autophagic clearance of aggregate-prone proteins, Nat. Genet., 37, 771, 10.1038/ng1591

Puls, 2003, Mutant dynactin in motor neuron disease, Nat. Genet., 33, 455, 10.1038/ng1123

Hafezparast, 2003, Mutations in dynein link motor neuron degeneration to defects in retrograde transport, Science, 300, 808, 10.1126/science.1083129

LaMonte, 2002, Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration, Neuron, 34, 715, 10.1016/S0896-6273(02)00696-7

Skibinski, 2005, Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia, Nat. Genet., 37, 806, 10.1038/ng1609

Parkinson, 2006, ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B), Neurology, 67, 1074, 10.1212/01.wnl.0000231510.89311.8b

Filimonenko, 2007, Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease, J. Cell Biol., 179, 485, 10.1083/jcb.200702115

Lee, 2007, ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration, Curr. Biol., 17, 1561, 10.1016/j.cub.2007.07.029

Pandey, 2007, HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS, Nature, 447, 859, 10.1038/nature05853

Berger, 2006, Rapamycin alleviates toxicity of different aggregate-prone proteins, Hum. Mol. Genet., 15, 433, 10.1093/hmg/ddi458