Parasite Exposure Drives Selective Evolution of Constitutive versus Inducible Defense

Current Biology - Tập 25 Số 8 - Trang 1043-1049 - 2015
Edze R. Westra1, Stineke van Houte1, Sam Oyesiku-Blakemore1, Ben Makin1, Jenny M. Broniewski1, Alex Best2, Joseph Bondy‐Denomy3, Alan R. Davidson3, Mike Boots4, Angus Buckling1
1Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
2School of Mathematics and Physics, University of Sheffield, Hicks Building, Sheffield S10 2TN, UK.
3Departments of Molecular Genetics and Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
4Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Tollrian, 1999

Heil, 2004, Evolutionary change from induced to constitutive expression of an indirect plant resistance, Nature, 430, 205, 10.1038/nature02703

Todesco, 2010, Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana, Nature, 465, 632, 10.1038/nature09083

Kraaijeveld, 1997, Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster, Nature, 389, 278, 10.1038/38483

Boots, 1993, Trade-offs with resistance to a granulosis virus in the Indian meal moth, examined by a laboratory evolution experiment, Funct. Ecol., 7, 528, 10.2307/2390128

Moret, 2000, Survival for immunity: the price of immune system activation for bumblebee workers, Science, 290, 1166, 10.1126/science.290.5494.1166

Long, 2011, How can immunopathology shape the evolution of parasite virulence?, Trends Parasitol., 27, 300, 10.1016/j.pt.2011.03.012

Labrie, 2010, Bacteriophage resistance mechanisms, Nat. Rev. Microbiol., 8, 317, 10.1038/nrmicro2315

Westra, 2012, The CRISPRs, they are a-changin’: how prokaryotes generate adaptive immunity, Annu. Rev. Genet., 46, 311, 10.1146/annurev-genet-110711-155447

Lenski, 1988, Variation in competitive fitness among mutants resistant to virus T4, Evolution, 42, 425, 10.2307/2409028

van der Oost, 2014, Unravelling the structural and mechanistic basis of CRISPR-Cas systems, Nat. Rev. Microbiol., 12, 479, 10.1038/nrmicro3279

Quax, 2013, Massive activation of archaeal defense genes during viral infection, J. Virol., 87, 8419, 10.1128/JVI.01020-13

Agari, 2010, Transcription profile of Thermus thermophilus CRISPR systems after phage infection, J. Mol. Biol., 395, 270, 10.1016/j.jmb.2009.10.057

Young, 2012, Phage-induced expression of CRISPR-associated proteins is revealed by shotgun proteomics in Streptococcus thermophilus, PLoS ONE, 7, e38077, 10.1371/journal.pone.0038077

Barrangou, 2007, CRISPR provides acquired resistance against viruses in prokaryotes, Science, 315, 1709, 10.1126/science.1138140

Jore, 2011, Structural basis for CRISPR RNA-guided DNA recognition by Cascade, Nat. Struct. Mol. Biol., 18, 529, 10.1038/nsmb.2019

Hale, 2009, RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex, Cell, 139, 945, 10.1016/j.cell.2009.07.040

Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829

Westra, 2012, CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3, Mol. Cell, 46, 595, 10.1016/j.molcel.2012.03.018

Garneau, 2010, The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA, Nature, 468, 67, 10.1038/nature09523

Andersson, 2008, Virus population dynamics and acquired virus resistance in natural microbial communities, Science, 320, 1047, 10.1126/science.1157358

Avrani, 2011, Genomic island variability facilitates Prochlorococcus-virus coexistence, Nature, 474, 604, 10.1038/nature10172

Shudo, 2001, Inducible defense against pathogens and parasites: optimal choice among multiple options, J. Theor. Biol., 209, 233, 10.1006/jtbi.2000.2259

Hamilton, 2008, Two arms are better than one: parasite variation leads to combined inducible and constitutive innate immune responses, Proc. Biol. Sci., 275, 937, 10.1098/rspb.2007.1574

Makarova, 2011, Evolution and classification of the CRISPR-Cas systems, Nat. Rev. Microbiol., 9, 467, 10.1038/nrmicro2577

Cady, 2012, The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages, J. Bacteriol., 194, 5728, 10.1128/JB.01184-12

Budzik, 2004, Isolation and characterization of a generalized transducing phage for Pseudomonas aeruginosa strains PAO1 and PA14, J. Bacteriol., 186, 3270, 10.1128/JB.186.10.3270-3273.2004

Richter, 2014, Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer, Nucleic Acids Res., 42, 8516, 10.1093/nar/gku527

Cady, 2011, Non-identity-mediated CRISPR-bacteriophage interaction mediated via the Csy and Cas3 proteins, J. Bacteriol., 193, 3433, 10.1128/JB.01411-10

Mojica, 2009, Short motif sequences determine the targets of the prokaryotic CRISPR defence system, Microbiology, 155, 733, 10.1099/mic.0.023960-0

Yosef, 2012, Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli, Nucleic Acids Res., 40, 5569, 10.1093/nar/gks216

Swarts, 2012, CRISPR interference directs strand specific spacer acquisition, PLoS ONE, 7, e35888, 10.1371/journal.pone.0035888

Deveau, 2008, Phage response to CRISPR-encoded resistance in Streptococcus thermophilus, J. Bacteriol., 190, 1390, 10.1128/JB.01412-07

Semenova, 2011, Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence, Proc. Natl. Acad. Sci. USA, 108, 10098, 10.1073/pnas.1104144108

Brockhurst, 2005, The effect of a bacteriophage on diversification of the opportunistic bacterial pathogen, Pseudomonas aeruginosa, Proc. Biol. Sci., 272, 1385, 10.1098/rspb.2005.3086

Gómez, 2011, Bacteria-phage antagonistic coevolution in soil, Science, 332, 106, 10.1126/science.1198767

Westra, 2014, CRISPR-Cas systems: beyond adaptive immunity, Nat. Rev. Microbiol., 12, 317, 10.1038/nrmicro3241

Stern, 2010, Self-targeting by CRISPR: gene regulation or autoimmunity?, Trends Genet., 26, 335, 10.1016/j.tig.2010.05.008

Vercoe, 2013, Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands, PLoS Genet., 9, e1003454, 10.1371/journal.pgen.1003454

Edgar, 2010, The Escherichia coli CRISPR system protects from λ lysogenization, lysogens, and prophage induction, J. Bacteriol., 192, 6291, 10.1128/JB.00644-10

Buckling, 2012, Bacteria-virus coevolution, Adv. Exp. Med. Biol., 751, 347, 10.1007/978-1-4614-3567-9_16

Mattick, 2002, Type IV pili and twitching motility, Annu. Rev. Microbiol., 56, 289, 10.1146/annurev.micro.56.012302.160938

O’Toole, 1998, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development, Mol. Microbiol., 30, 295, 10.1046/j.1365-2958.1998.01062.x

Weinberger, 2012, Viral diversity threshold for adaptive immunity in prokaryotes, MBio, 3, 10.1128/mBio.00456-12

Tyson, 2008, Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses, Environ. Microbiol., 10, 200, 10.1111/j.1462-2920.2007.01444.x

Emerson, 2013, Virus-host and CRISPR dynamics in Archaea-dominated hypersaline Lake Tyrrell, Victoria, Australia, Archaea, 2013, 370871, 10.1155/2013/370871

Thaler, 1997, A phylogenetic reconstruction of constitutive and induced resistance in Gossypium, Am. Nat., 149, 1139, 10.1086/286042