Parametrized Littlewood–Paley Operators on Herz-Type Hardy Spaces with Variable Exponent

Bulletin of the Malaysian Mathematical Sciences Society - Tập 43 Số 6 - Trang 4143-4169 - 2020
Xiong Liu1, Sibei Yang1, Xinxia Wang2, Baode Li2
1School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou, People’s Republic of China
2College of Mathematics and System Sciences, Xinjiang University, Urumqi, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable $$L^p$$ spaces. Rev. Mat. Iberoam. 23(3), 743–770 (2007)

Ding, Y., Lu, S., Xue, Q.: Parametrized area integrals on Hardy spaces and weak Hardy spaces. Acta Math. Sin. (Engl. Ser.) 23(9), 1537–1552 (2007)

Ding, Y., Lu, S., Xue, Q.: Parametrized Littlewood–Paley operators on Hardy and weak Hardy spaces. Math. Nachr. 280(4), 351–363 (2007)

Izuki, M.: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 36(1), 33–50 (2010)

Izuki, M.: Boundedness of commutators on Herz spaces with variable exponent. Rend. Circ. Mat. Palermo (2) 59(2), 199–213 (2010)

Kenig, C.E.: Harmonic analysis techniques for second order elliptic boundary value problems. Amer. Math. Soc. 83, 14–26 (1991)

Ondrej, K., Jiri, R.: On spaces $$L^{p(x)}$$ and $$W^{k, p(x)}$$. Czechoslov. Math. 41(116), 592–618 (1991)

Liu, X., Li, B., Qiu, X., Li, B.: Estimates for parametric Marcinkiewicz integrals on Musielak–Orlicz Hardy spaces. J. Math. Inequal. 12(4), 1117–1147 (2018)

Li, X., Yang, D.: Boundedness of some sublinear operators on Herz spaces. Ill. J. Math. 40, 484–501 (1996)

Lu, S., Yang, D.: The weighted Herz-type Hardy space and its implication. Sci. China (Ser A) 38, 662–673 (1995)

Sakmoto, M., Yabuta, K.: Boundedness of Marcinkiewicz functions. Studia Math. 135(2), 103–142 (1999)

Stein, E.M.: The development of square functions in the work of A. Zygmund. Bull. Am. Math. Soc. (N.S) 7, 359–376 (1982)

Wang, H.: Commutators of singular integral operator on Herz-type Hardy spaces with variable exponent. J. Korean Math. Soc. 54(3), 713–732 (2017)

Wang, H., Liu, Z.: The Herz-type Hardy spaces with variable exponent and their applications. Taiwan. J. Math. 16(4), 1363–1389 (2012)

Wang, H., Liu, Z.: The wavelet characterization of Herz-type Hardy spaces with variable exponent. Ann. Funct. Anal. 3(1), 128–141 (2012)

Wang, H., Liu, Z.: Some characterization of Herz-type Hardy spaces with variable exponent. Ann. Funct. Anal. 6(2), 224–233 (2015)

Wang, H., Wu, Y.: Higher-order commutators of parameterized Littlewood–Paley operators on Herz spaces with variable exponent. Trans. A. Razmadze Math. Inst. 171(2), 238–251 (2017)

Wang, H., Yan, D.: Commutators of Marcinkiewicz integrals with rough kernels on Herz-type Hardy spaces with variable exponent. J. Math. Inequal. 12(4), 1173–1188 (2018)

Wang, L., Shu, L.: Multilinear commutators of singular integral operators in variable exponent Herz-type spaces. Bull. Malays. Math. Sci. Soc. 42(4), 1413–1432 (2019)

Wei, X., Tao, S.: Boundedness for parameterized Littlewood–Paley operators with rough kernels on weighted weak Hardy spaces. Abstr. Appl. Anal. Article ID: 651941 (2013)

Zhuo, C., Yang, D., Liang, Y.: Intrinsic square function characterizations of Hardy spaces with variable exponents. Bull. Malays. Math. Sci. Soc. 39(4), 1541–1577 (2016)