Parametric time series models for multivariate EEG analysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gersch, 1971, Spectral analysis of EEGs by autoregressive decomposition of time series, Math. Biosci., 7, 205, 10.1016/0025-5564(70)90049-0
Wenneberg, 1971, Application of a computer based model for EEG analysis, Electroencephal. Clin. Neurophysiol., 31, 457, 10.1016/0013-4694(71)90167-2
Zetterberg, 1973, Experience with analysis and simulation of EEG signals with parametric description of spectra
Bohlin, 1973, Comparison of two methods of modeling stationary EEG signals, IBM J. Res. Develop., 17, 194, 10.1147/rd.173.0194
Herolf, 1973
Jones, 1974, Identification and autoregressive spectral estimation, IEEE Trans. Autom. Control, AC-19, 894, 10.1109/TAC.1974.1100730
Fenwick, 1969, Application of the autoregressive model to EEG analysis, Agressologie, 10, 553
Gersch, 1972, Causality or driving in electrophysiological signal analysis, Math. Biosci., 7, 177, 10.1016/0025-5564(72)90017-X
Gersch, W. and Yonemoto, J. Automatic classification of multivariate EEGs using an amount of information measure and the eigenvalues of parametric time series model features. Comput. Biomed. Res., in press.
Blackman, 1958
Walter, 1963, Spectral analysis of electroencephalograms, Exp. Neurol., 8, 155, 10.1016/0014-4886(63)90042-6
Jenkins, 1968
Akaike, 1970, On a semi-automatic power spectrum estimation procedure, 974
Akaike, 1972, Information theory as an extension of the maximum likelihood principle, 267
Akaike, 1974, A new look at statistical model identification, IEEE Trans. Autom. Control, AC-19, 716, 10.1109/TAC.1974.1100705
Parzen, 1974, Some recent advances in time series modeling, AC-19, 723
Parzen, 1976, Determining the order of approximating autoregressive schemes
Akaike, 1969, Power spectrum estimation through autoregressive model fitting, Ann. Inst. Statist. Math., 10.1007/BF02532269
Hannan, 1970
Parzen, 1970, Multivariate time series modeling
Gersch, W. and Liu, R. Statistical performance of the autoregressive model method for multivariate time series spectral analysis, in preparation.
Levinson, 1947, The Wiener rms error criteria in filter design and prediction, J. Math. Phys., 25, 261, 10.1002/sapm1946251261
Whittle, 1963, On the fitting of multivariate autoregressions and the approximate canonical factorization of a spectral density matrix, Biometrika, 50, 129, 10.1093/biomet/50.1-2.129
Wiggins, 1965, Recursive solution to the multichannel filtering problem, J. Geophys. Res., 70, 1885, 10.1029/JZ070i008p01885
Gersch, 1974, Least squares estimates of structural system parameters using covariance function data, IEEE Trans. Autom. Control, AC-18, 898, 10.1109/TAC.1974.1100731
Tharp, 1975, Spectral analysis of seizures in humans, Comput. Biomed. Res., 8, 503, 10.1016/0010-4809(75)90023-3
Akaike, 1973, Maximum likelihood identification of gaussian autoregressive moving average models, Biometrika, 60, 255, 10.1093/biomet/60.2.255
Gersch, W. and Yonemoto, J. Maximum likelihood autoregressive-moving average parameter estimation using covariance function data, in preparation.
Kashyap, 1970, Maximum likelihood identification of stochastic linear systems, IEEE Trans. Autom. Control, AC-15, 25, 10.1109/TAC.1970.1099344
Yonemoto, 1977, Two-stage Least Squares AR-MA Estimates for Multivariate Stationary Time Series
Åström, 1970
Jones, 1964, Prediction of multivariate time series, J. Appl. Meteorol., 3, 285, 10.1175/1520-0450(1964)003<0285:POMTS>2.0.CO;2
Brillinger, 1975
Koopmans, 1974
Gersch, 1973, Estimation of power spectra with finite-order autoregressive models, IEEE Trans. Autom. Control, AC-18, 367, 10.1109/TAC.1973.1100350
Ozaki, 1975, On the fitting of non-stationary autoregressive models in time series analysis, 224
Gersch, 1976, Spectral regression-amount of information analysis